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Abstract 

This paper evaluates skewness in the cross-section of stock returns in light of pre-

dictions from a well-known class of models. Cross-sectional skewness in monthly 

returns far exceeds what the standard lognormal model of returns would predict. In 

spite of the fact that cross-sectional skewness is positive, aggregate market skewness 

is negative. We present a model that accounts for both of these facts. This model 

also exhibits long-horizon skewness through the mechanism of nonstationary firm 

shares. 
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1 Introduction 

Underlying the cross-section of stock returns is a universe of heterogeneous entities com-

monly referred to as firms. What is the most useful approach to modeling these firms? 

For the aggregate market, there is a wide consensus concerning the form a model needs 

to take to be a plausible account of the data. While there are important differences, 

quantitatively successful models tend to feature a stochastic discount factor with station-

ary growth rates and permanent shocks, combined with aggregate cash flows that, too, 

have stationary growth rates and permanent shocks.1 No such consensus exists for the 

cross-section. 

We start with a simple model for stock returns to illustrate the puzzle. The model 

is not meant to be the final word on the cross-section, but rather to show that the most 

straightforward way to extend the consensus for the aggregate to the cross-section runs 

quickly into difficulties both with regard to data and to theory. Because the literature has 

focused on the lognormal distribution, we assume asset returns have a common lognormal 

shock and an idiosyncratic shock. This model is consistent with an equilibrium where 

agents have constant relative risk aversion and dividends also feature a common and 

idiosyncratic shock. 

We calibrate this model to the CRSP universe on stock returns. Despite the fact that 

the lognormal model implies return skewness, we find that the degree of skewness implied 

by the model is far less than monthly cross-sectional skewness in the data. This turns 

out to be the case even when we consider that the skewness in the data might be a time 

series rather than a cross-sectional phenomenon. That is, in the time series, it is possible 

that skewness results from “superstar months,” rather than “superstar stocks.” We show 

that even when adjusting for the former, there are far too many “superstar stocks” to be 

explained by the lognormal model. 

Interestingly, the high degree of cross-sectional skewness co-exists with negative skew-

ness in monthly aggregate market returns.2 We extend the basic lognormal model to 
1See, for example, Bansal and Yaron (2004), Campbell and Cochrane (1999), Wachter (2013). 
2Albuquerque (2012) also notes the coexistence of positive firm skewness with negative aggregate 
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account for both negative aggregate market skewness and idiosyncratic skewness in the 

cross-section of returns. We show that large, rare idiosyncratic jumps appear to be re-

quired to explain cross-sectional skewness. 

Our results shed light on other recent findings concerning skewness. First, our results 

relate to recent work by Bessembinder (2018), who shows that most stocks underperform 

Treasury bills most of the time. Perhaps surprisingly, we show that the underperformance 

of most stocks in the data does not pose a challenge to the lognormal model, while monthly 

and long-horizon skewness do. The lognormal model captures the underperformance of 

most stocks, most of the time, even while it fails to capture monthly cross-sectional 

skewness. 

Our work also relates to the research on power laws and firm values (Axtell, 2001; 

Gabaix, 2009). We show that both the lognormal model and its generalizations produce 

skewed distributions in long-run returns. This implies that a potential role for idiosyn-

cratic volatility in aggregate outcomes, as in Gabaix (2011). 

Since Fama (1965) established that stock returns did not approximate a normal dis-

tribution, the literature has examined the empirical linkages between this skewness and 

expected returns. The initial focus was on co-skewness (Harvey and Siddique, 2000; 

Dittmar, 2002), while more recent papers examine idiosyncratic skewness as well (Bali 

et al., 2011; Boyer et al., 2010; Kapadia, 2006). Others work measures ex ante skewness 

through options (Chang et al., 2013; Conrad et al., 2013). The focus of these papers is 

on the measurement of conditional skewness for a particular stock at a given point in 

time. This is a difficult measurement problem. In this paper, by contrast, we focus on the 

degree of unconditional skewness relative to various benchmark hypotheses on the return 

data generating process.3 We find that it is very large. 

Indeed, while most of the literature has focused on the cross-section of expected re-

skewness. He presents a model that builds on the CARA-normal framework to capture this phenomenon. 
3An underlying assumption in this literature, based on early work of Kraus and Litzenberger (1976), 

is that non-increasing absolute risk aversion implies that positive co-skewness is negatively priced and 
that positive idiosyncratic skewness has a price of zero. However, a lognormal distribution features both 
types of skewness and admits a CAPM-type result with constant relative risk aversion. Thus the choice 
of benchmark is important. 

2 



turns with the goal of establishing a correct pricing model, we focus on the measurement 

of cross-sectional skewness for its own sake. Cross-sectional skewness has received little 

attention, perhaps due to the view that it is not relevant in diversified portfolios because 

of the central limit theorem; that is, a portfolio of sufficiently many assets is close to 

normally distributed, and idiosyncratic risk does not matter. Our results indicate, how-

ever, that this reasonable intuition is model-dependent. There is no ex ante reason to 

dismiss skewness as irrelevant in a diversified portfolio. Correctly characterizing the dis-

tribution of returns, therefore, is important for portfolio decisions; it is also important 

for the reliability of statistics such as the mean and standard deviation, particularly the 

conditional mean and standard deviation. Finally, if one wants to simultaneously under-

stand the cross-section of stock returns as well as the aggregate market, it is necessary to 

model both simultaneously. In this regard, one must think about how the cross-section 

aggregates, and here, the distributional assumptions on the cross-section are of first-order 

importance. 

2 Some facts about skewness 

We assume a time series of stock market return data t = 1, . . . , T . There are a total of 

N stock returns available, but at any point in time, only a subset are available. That is 

Jt ⊂ {1, . . . , N} is the set of stocks available at time t. 

Furthermore, we assume that each stock j has consecutive return data from some 

t0j ≥ 1 to Tj ≤ T . Define time-series and cross-sectional averages: 

TjX1
R̄j ≡ Rjs (1)

Tj − t0j + 1 s=t0j 

TXX1
R̄ ≡ PT Rjs (2)

|Jt|t=1 s=1 j∈Jt X1
R̄t ≡ Rjt, (3)

|Jt| 
j∈Jt 
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where |Jt| denotes the number of elements in Jt. While (1–3) do involve abuse of notation, 

the intent should be clear. Equation 1 is the time series mean of stock j, (2) the pooled 

(cross-sectional) mean of all stock returns, and (3) the equal-weighted average of the stock 

return at time t. 

• Time-series skewness for stock j: 

1 PTj ¯ 
γTS Tj −t0j +1 s=t0j 

(Rjs − Rj )
3 

j ≡ h i3/2 
(4) 

1 PTj Rj )2¯ 
Tj −t0j s=t0j 

(Rjs − 

We can also use (4) to define time-series skewness for the aggregate market. 

• Cross-sectional skewness (measured using pooled returns) 

PT P1 R̄)3PT t=1 j∈Jt 
(Rjt − 

γCS ≡ t=1 |Jt|h i3/2 
. (5)PT P1 R̄)2PT |Jt|−1 t=1 j∈Jt 

(Rjt − 
t=1 

• Cross-sectional skewness at time t: 

¯ 
|J 
1 
t| 
P 

j∈Jt 
(Rjt − Rt)

3 

γcs,t ≡ h i3/2 
, (6) 

1 P ¯ 
|Jt|−1 j∈Jt 

(Rjt − Rt)2 

Harvey and Siddique (2000) and Dittmar (2002) focus on the first of these, whereas 

Kapadia (2006) focuses on the third. Following Bessembinder (2018), we consider two 

other measures of skewness, namely, the percent of returns greater than some fixed amount 

(say, the average Treasury bill rate), and the percent of total increase in value accounted 

for by the top 10 firms. 

What could be the reasons for looking at these various measures of skewness? If 

skewness if a fixed quantity belonging to firm j, then (4) will be a consistent estimator 

of it. However, it may not be an efficient estimator, particularly if skewness is very large; 

in that case, it might be useful to bring information from other assets to bear, as in 
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(5). One might object, however, that (5) does not only capture skewness in returns, it 

also captures variation in idiosyncratic volatility. Indeed, (Campbell et al., 2001) show 

significant time-series variation in idiosyncratic volatility. Presumably (6) is immune to 

this; however, like (4) it is likely to be missing important observations, and thus runs the 

risk of understating true skewness. 

In what follows, we do not take a stand on which of these is the best, or even if they 

are consistent estimators of some fixed quantity as N or T becomes large. We simply 

calculate the values in the data, and compute the sampling distribution under various 

null hypotheses. 

As a first look at the data, Table 1 shows cross-sectional skewness γCS across various 

subsets of the CRSP universe.4 Monthly skewness equals about 6. We also confirm the 

result of Bessembinder (2018) that most stock-month combinations deliver lower returns 

than the average 1-month Treasury bill. 

Table 2 takes a deeper look at these results by examining statistics on γTS and on 

cross-sectional skewness at a point in time γcs,t. We look at both returns and log returns. 

Median time series skewness is not particularly large (0.9 even for the larger subset of 

firms), and is zero for log returns. Median cross-sectional skewness γcs,t is higher, at 2.4. 

Interestingly, even cross-sectional skewness from pooled returns γCS , is negative when we 

look at log returns. Thus, if one were to look at time series skewness, or at log returns, 

one might conclude that a model with idiosyncratic lognormal shocks might adequately 

describe the cross-section. 

3 Model 

In what follows, we introduce the most general form of our model, and then consider 

special cases. A key component of our model is the compound Poisson process, which will 

allow us to tractably introduce rare events in a discrete-time famework.5 

4See section 5 for a description of these subsets when not obvious. 
5Alternative tractable ways of capturing skewness include centered Gamma shocks (Bekaert et al., 

2019) and skew-normal shocks (Colacito et al., 2016). 
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3.1 The Compound Poisson process 

Let Qt be a compound Poisson process parameterized by λt and jump size ζ. Namely, λt 

is the expected number of jumps in the time period (t, t + 1]. Agents in the model view 

jumps in (t, t + 1] as occurring at t + 1. Then: 

⎧ ⎪PNt+1−Nt⎨ if Nt+1 −Nt > 0i=1 ζi 
Qt+1 = ⎪⎩0 if Nt+1 −Nt = 0 

where Nt is a Poisson counting process and Nt+1 −Nt is the number of jumps in the time 

interval (t, t + 1]. It follows that for u ∈ R, 

� � uζ ]−1)uQt+1 λt(E[eEt e = e (7) 

Note that the conditional expected value of Qt+1 equals 

� � 
Et [Qt+1] = Et ζ1 + · · · + ζNt+1−Nt = Et [Nt+1 −Nt] Et [ζ] 

so that 

E [Qt+1|Ft] = λtE [ζ] 

We compute the conditional variance of Qt+1 using the law of total variance: 

� � 
Vart [Qt+1] = λt Var (ζ) + (E [ζ])2 

3.2 Dividend growth and the stochastic discount factor 

Consider a cross-section of N assets. Define Djt as the dividend on asset j at time t. 

Assume log dividend growth on asset j, j = 1, . . . , N is as follows: 

� � 
1 1 
σ2 β2σ2 �c − βQΔdj,t+1 = i,j j + βj σc j,t+1 Qt+1 + Qi (8)µj − − c t+1 + σij �

i 
j j,t+12 2 
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where �ct and {�i |j = 1, . . . , N} are iid standard normal variables, jt 

Qt+1 ∼ Compound Poisson (λt, ζ) 

and � � 
Qi ∼ Compound Poisson λi, ζ i j,t+1 j 

such that, conditional on time-t information Qt+1 and {Qj,t+1|j, = 1, . . . , N} are indepen-

dent of the normal shocks and of each other. 6 

First note that, absence compound Poisson realizations, the mean of dividend growth 

(as opposed to log dividend growth) equals µj . Normal systematic shocks �c,t+1 affect firm-

j dividend growth, as do iid idiosyncratic shocks �i The loading on the systematicj,t+1. 

shock differs across firms and is given by βj . We calibrate Qt+1 and Qi 
j,t+1 so that they are 

positive, and assume βj
Q < 0. The compound Poisson random variable Qt+1 is systematic, 

whereas Qi is idiosyncratic.j,t+1 

The above specification allows ζ and ζj
i to be random variables. We will assume that 

these are drawn from time-invariant distributions. Note that the intensity of Qt+1 is 

time-varying. We assume: 

λt+1 = (1 − ϕλ) λ̄+ ϕλλt + Qt
λ 
+1 

where � � 
Qλ

t+1 ∼ Compound Poisson ν, ζλ 

In recent work, Salgado et al. (2019) document considerable skewness in firm-level em-

ployment and sales. This skewness could be either positive or negative depending on the 

state of the business cycle. These skewed shocks could be the origin of the skewed shocks 

in asset-level cash flows in (8). 

6This is a “multiple-trees” model similar to that considered by Cochrane et al. (2008) and Martin 
(2013). 
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Define the stochastic discount factor (SDF) as follows 

� � 
1 � � � � 

Mt+1 = exp −rf − xt 
2 − λt Et e ζ − 1 − xt�t

c 
+1 + Qt+1 , (9)

2 

where rf is the one-period riskfree rate, which we assume to be constant, and where 

xt+1 = (1 − ϕ) x̄+ ϕxt + σx�t
x 
+1 

for a standard normal �xt+1 is independent of all other shocks. Applying (7), along with 

properties of the lognormal distribution, we have E[Mt+1] = e−rf as required. 

3.3 Solution for prices 

Let Pn,j,t be the time-t price of the dividend on asset j that will be paid n periods from 

now. Absence of arbitrage implies 

� � �� 
Pn−1,j,t+1Et Mt+1 = 1 (10)
Pn,j,t 

Equation 10 implies the following recursion for ex-dividend prices. 

� � �� �� 
Pn,j,t Dj,t+1 Pn−1,j,t+1 

= Et Mt+1 (11)
Dj,t Dj,t Dj,t+1 

Note also that � � 
Pn,j,t Dj,t+n 

= Et Mt,t+n ,
Dj,t Dj,t Qnwhere Mt,t+n = i=1 Mt+i. The Markov assumptions on the state variables imply that 

we can define functions 
Pn,j,t 

F j n(xt, λt) = 
Dj,t 

It follows from (11) and P0,j,t = Dj,t that 

� 
Fn

j (xt, λt) = exp aj (n) + bxj (n) xt + bλj (n) λt (12) 
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where 

1 − ϕn 

bxj (n) = −βj σc 
1 − ϕh i 1 − ϕn 
−(βQ−1)ζ λbλj (n) = E e ζ − e j 

1 − ϕλ 

Note that bjx(n), bλ
j (n) < 0 and decreasing. 

Define the return 

F jPj,n−1,t+1 n−1 (xt+1, λt+1) Dj,t+1
Rj,n,t+1 = = 

F jPjnt n (xt, λt) Djt 

It follows from (12) that 

h � h 
Q 

i �� i�−(β −1)ζ −ζjlog Rj,n,t+1 = rf + βj σcxt + Et e − Et e λt 

Q+ bxj (n − 1) σx�t
x 
+1 + bλj (n − 1) Qλ �t

c 
+1 + σi,j �

i − β Qt+1 + Qi 
t+1 + βj σc j,t+1 j j,t+1 

1 1 1 − σ2 − βj 
2σ2 − )2 

i,j c (bxj (n − 1) σx
2 2 2� h i � � h i � 

− ν Et e bλj (n−1)ζλ − 1 − λj
i Et e ζj

i − 1 (13) 

Then the risk premium on the dividend strip for asset j is as follows: 

h i 
log Et [Rj,n,t+1] = rf + (βj σc) xt − λtE (e −β

Qζ − 1)(e ζ − 1) . 

Aggregate parameters σx, ν do not appear, and the idiosyncratic parameters σij and λi 

do not appear. Risk premia are a compensation for bearing the aggregate normal risk 

summarized by βj σc, and the aggregate rare-event risk, summarized by the covariance 

(e−β
Qζ − 1)(eζ − 1). By assumption, shocks to xt and to λt are unpriced. Idiosyncratic 

risk is also unpriced. 

In the special case of no skewed shocks, the model takes the form of a consumption-

CAPM in log returns. Under the further restriction of constant xt, the model is precisely 

the consumption CAPM of Breeden (1979). We can recover this model from equilibrium 
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using constant relative risk aversion. Thus, apparent skewness preference from the DARA 

(under the special case of CRRA utility) exactly “cancels out” the skewness present in log 

returns to produce a model closely resembling the CAPM, even though neither normality 

or mean-variance preferences hold. 

3.4 Pricing long-lived assets 

In order to calibrate stock returns, we need to move from dividend strips to long-lived 

assets. The price-dividend ratio on asset j is equal to the sum of the price-dividend ratios 

on the strips for asset j: 
∞XPjt 

F j= n(xt, λt) (14)
Dt n=1 

Define the return 
Pj,t+1 

Dj,t+1 
+ 1 Dj,t+1

Rj,t+1 = .
Pjt Djt 
Djt 

Because asset j is a portfolio of strips, the return is a weighted average of the strip returns: 

∞X 
Rj,t+1 = w(xt, λt, n)Rj,n,t+1, (15) 

n=1 

with weights: 
F j (xt, λt) 

w(xt, λt, n) = P∞ 
n . (16)
F j n=1 n(xt, λt) 

Strictly speaking, (15) and (16) fully define the return. However, these are difficult to 

implement. In order to calibrate the model, we approximate the return. 

Note that all terms in the summation in (13) have dividend growth in common. Write 

the log return as: ! 
∞X F j (xt+1, λt+1)

log Rj,t+1 = log w(xt, λt, n) 
n−1 +Δdj,t+1 (17) 

n=1 Fn
j (xt, λt) 
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For the first term in (17), we use the approximation: 

! 
∞ ∞X F j (xt+1, λt+1) X F j (xt+1, λt+1)n−1 n−1log w(xt, λt, n) ≈ w(xt, λt, n) log 

F j F j n(xt, λt) n(xt, λt)n=1 n=1 

which is accurate for small shocks. Variation in the weights is second-order for the effects 

of interest. Define 

∞X 
b ∗ 
x ≈ w(xt, λt, n)bxj (n − 1) 

n=1 
∞X 

b ∗ 
λ ≈ w(xt, λt, n)bλj (n − 1) 

n=1 

as weighted averages of the coefficients. 

Using (13), we find that 

log Rj,t+1 ≈ constant as of time t + b ∗ 
xσx�t

x 
+1 + b ∗ 

λQt
λ 
+1 

+ βj σc�
c
t+1 + σij �

i − βj
Q 

j,t+1 (18)j.,t+1 Qt+1 + Qi 

To ensure that the return is consistent with no-arbitrage, we then write: 

h i 
log Rj,t+1 = rf + βj σcxt + Et e ζ − e −(β

Q
j −1)ζ λt 

1 1 1 � �2 
σ2 β2σ2 b ∗− − − σxi,j j c xj2 2 2h i h i 

b∗ ζλ ζ− νEt e λj − 1 − λi
j Et e 

i
j − 1 

+ b ∗ �x �t
c 
+1 + σi,j �

i − βQQt+1 + Qi (19)xj σx t+1 + b ∗ 
t+1 + βj σc j,t+1 jλj Q
λ 

j,t+1 

The time-t constants in (19) imply 

Et [Mt+1Rj,t+1] = 1, 

given the expression in (18). 
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When calibrating the parameters, it is convenient to consider an asset that is not 

subject to idiosyncratic risk, and with unit loadings on the shocks. This way, we can be 

sure that the common parameters are consistent, in at least an approximate sense, with 

the aggregate market. We will refer to this as the reference asset, and, give it the subscript 

m, because it represents the aggregate market in the calibration. The cash flows on this 

asset equal: � � 
Δdt+1 = µ − 

1 
σc 
2 + σc�t

c 
+1 − Qt+1

2 

We derive the price of this asset in a manner that is the same as the individual assets j. 

The return on this asset equals: 

� � 
log Rt+1 = rf + σcxt + Et e ζ − 1 λt h i 

2 b∗ ζλ − 
1 
σ2 − 

1
(b ∗ σx) − νEt e λ − 1 

2 c 2 x 

+ bx 
∗ σx�t

x 
+1 + b ∗ 

λQt
λ 
+1 + σc�t

c 
+1 − Qt+1 (20) 

3.5 Summary of the models 

• Consumption CAPM. This model has dividend process (8) with the compound Pois-

son processes Qt and Qi
jt identically zero.7 The model has a limiting version of SDF 

(9) with σx = 0, and Qt
λ = 0. Thus xt is constant at x̄, which has the interpretation 

of risk aversion. 

• Lettau and Wachter (2007) (henceforth LW) lognormal model. This model has 

dividend process (8) with the compound Poisson processes Qt and Qi
jt equal to 

zero. Moreover, in the SDF (9) Qλ
t = 0. We call this the Lognormal model. 

• LW model with rare dividend disasters. This model takes (8) and sets the idiosyn-

cratic compound Poisson process Qi
jt to zero. Moreover, in the SDF (9), Qλ = 0. 

• LW model with normal-times negative systematic skewness. This model takes (8) 

7That is, we set λt = 0 and λi = 0. 
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and sets Qi
jt to zero. The SDF is given by (9). We call this the Lognormal-N model. 

• LW model with negative market skewness and positive idiosyncratic skewness. This 

model uses (8) and (9) as given. We call this the Lognormal-NP model. 

In what follows, we compare the Lognormal model, the Lognormal-N model, and the 

Lognormal-NP model. We do not consider either the Consumption CAPM (because of its 

inability to match stock market volatility) or the model with skewed shocks to dividends 

only. The model with skewed shocks to dividends only seems, on its face, an appealing 

model. However, this model would only be able to match negative skewness based on 

negative skewness in dividend growth. 8 

4 Data 

For the main part of our analysis, we focus on the CRSP subsample beginning in 1973, 

because this corresponds to inclusion of NASDAQ firms (Figure 1 shows the evolution of 

the number of firms over time). The data consist of monthly returns on ordinary common 

shares of stocks traded on all major exchanges, available on CRSP, from January 1973 to 

December 2016. Unless stated otherwise, we use holding period returns (i.e. with invested 

dividends). When computing multi-period returns, we follow entities using PERMNO. 

We use one-month Treasury bill returns from Kenneth French’s website. We exclude 

all firms with fewer than 60 months of returns, to allow for plausible estimation of the 

parameters. We also consider a smaller subset of firms that are continuously part of the 

sample from 1973 to 2016. Unless otherwise stated, return statistics are monthly, and 

(when relevant) in percentage terms. 

8One micro-foundation for the lognormal-NP model is learning and recursive utility. See Wachter 
and Zhu (2019). 
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5 Simulation 

We generate fictitious samples from the models described in Section 3. We consider two 

types of simulations. In the first, we focus on fictitious samples designed to replicate 

the firms continuously in existence (there are 404 such firms). In the second, we set the 

number of firms in our simulation equal to the median number of firms in existence in 

the sample at each point in time. We then estimate firm-level parameters as described 

in the next section. Clearly, there are many more firms in the estimation than there 

are stocks in the simulation (14,786 versus 5447). We thus use the following bootstrap 

procedure. At the start of each fictitious sample, we draw 5447 stocks from the universe 

of 14,786 without replacement. To reflect the fact that some firm-level parameters are 

statistically unlikely—the firms to which they belong are only present on the exchanges 

for a small period of time— we assign different probability weights to different firms. 

That is, if τj = Tj − t0j + 1 is the number of months that firm j is listed, we draw 
τjfrom the estimated parameters of firm j with probability P14,786 . Thus, across fictitious τjj=1 

samples, we should roughly capture the true distribution of firms in the cross section. The 

first of these strategies is subject to survival bias. The second is subject to the criticism 

that we still may overweight firms that only exist for a short time (because once a firm 

has entered the simulation it does not leave). As we will see, however, the conclusions we 

reach are surprisingly robust across these two strategies. This strongly suggests that more 

complicated ways of capturing the cross section of firms would lead to nearly identical 

results. 

Given a set of firm-level parameters, we simulate fictitious samples assuming returns 

are distributed as in Section 3. For each sample, we draw the aggregate shocks �c, �x, Q, 

and Qλ. We then draw the appropriate number of sequences of firm-specific shocks, and 

use (19) as the asset return. We set the riskfree rate to a constant in the simulations and 

equal to the average rate on the 1-month Treasury bill. 
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5.1 Calibration 

We calibrate the aggregate parameters of each model to match the mean, standard de-

viation, and autocorrelation of the price-dividend ratio, similarly to Lettau and Wachter 

(2007), but with adjustments given that our calibration is monthly. 9 The unconditional 

mean of the price of risk, x̄ , is chosen such that when xt is at its long-run mean, the 
√ 

maximal Sharpe ratio is 0.20. Thus, setting ex2 − 1 = 0.20, implying x̄ = 0.198. The 

parameter σc is determined by annual dividend volatility. Given an annual persistence of 

0.87, ϕ = ϕλ = 0.988 = 0.871/12 . 

For simplicity, we calibrate the lognormal-N and lognormal-NP models so that there 

is about one Poisson occurrence per year, and that the effect size is 4.5%. In order to 

identify volatility parameters, for the purposes of the calibration, we set the loading b∗ 
x = 1 

in (20) and b∗ = βj . 10 These assumptions imply a one-factor model. We thus estimate βjxj 

and βj
Q from a CAPM regression of log market returns on log asset returns. Given these 

aggregate loadings, we set idiosyncratic volatility parameters to match total volatility for 

= σ2 ]2the lognormal and lognormal-N model. That is, σ[R]2 
i,j + βj 

2σ[Rm , where σ[R]2 is 

the variance of R. For the lognormal-NP model, we assume idiosyncratic jumps happen 

with one tenth of the probability of the aggregate jumps, and draw parameters from a 

power law distribution that is sufficient to match the skewness in the data. Given these 

values, we scale down σi,j accordingly, so that we match individual stock volatility. Table 3 

gives our calibrated values. 

Table 4 reports results for the aggregate market in the data, and compares these to 

the reference asset (namely the asset with no idiosyncratic shocks). The table shows that, 

while all three models can match the equity premium and stock market volatility, the 

model with only lognormal shocks cannot match negative aggregate market skewness. 

9We thus set σc and σx to be lower in the lognormal-N and lognormal-NP models as compared with 
the lognormal model. 

10In effect, we assume that assets’ exposure to xt is the same as to �c . For assets of fixed duration, 
this assumption is correct. However, assets with longer durations will have more exposure to xt. Given 
that our primary purpose is skewness in individual stock returns rather than explaining average returns, 
accounting for this effect seems unlikely to make a difference. 
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5.2 Cross-sectional skewness in pooled returns 

Tables 5 and 6 shows our main results. We discuss only Table 6, as the results for Table 5 

are similar. 

The data column of Table 6 shows the mand and standard deviation of pooled stock 

returns, as well as the cross-sectional skewness. The table shows that all three models 

successfully match the first two moments of pooled stock returns. More surprisingly, both 

the lognormal and lognormal-N model come close to matching some moments relating 

to skewness. For example, both models predict that log returns are slightly negatively 

skewed, which turns out to be the case in the data. Thus focusing on log returns would 

lead one to erroneously conclude that the lognormal model generates sufficient skewness 

to explain the cross-section. 

Both the lognormal and lognormal-N models can also account for the fact that most 

stock returns on most days perform worse than Treasury bills (Bessembinder, 2018). To 

understand this result, consider, for simplicity, the lognormal model. How is it that 

a model with a positive price of risk can produce returns that are below Treasury bill 

returns most of the time? This requires us to evaluate 

Pr(Rj > Rf ) = Pr(log RM > rf ), (21) 

where the inequality holds because the log in a monotonic transformation. Consider (19), 

specialized to the case of no Poisson shocks: 

1 1 1 � �2 
σ2 β2σ2 b ∗ log Rj,t+1 − rf = βj σcxt − − − σxi,j j c xj2 2 2 

+ b ∗ �x �c 
xj σx t+1 + βj σc t+1 + σi,j �j,t 

i 
+1. 

Of the terms on the right-hand side, only βj σcxt represents a risk premium. When the 

price of risk xt is positive, as it would be all of time in a consumption-based model (and 

most of the time in any model with an equity premium), this term must be positive for 
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an asset exposed to systematic risk. The log return, however, can easily fall below the � �2 
σ2 − 1 β2σ2 − 1 b∗riskfree rate because of the Jensen’s inequality adjustments −1

2 i,j 2 j c 2 xjσx . 

It is the log return that matters when comparing the median return to the riskfree rate, 

given (21). The agent is willing to accept a lower return more than half of the time 

because of the upside potential represented by Jensen’s inequality. 

Finally, the lognormal and lognormal-N model both come close to matching the degree 

of time series skewness in the data. While neither can match it exactly, the numbers are in 

the same order of magnitude. It is in the pooled cross-sectional skewness that the models 

are so far off. The maximum value generated across simulations of these models is about 

1, whereas pooled cross-sectional skewness is close to six in the data. Only the lognormal-

NP model, with the positive idiosyncratic Poisson events, can match the cross-sectional 

skewness in the data. 

5.3 Cross-sectional skewness at a fixed point in time 

So far we have reported that returns in the data are far more skewed than what the lognor-

mal model would predict. One possible reason for this skewness is that, in pooling returns 

in the data, we have aggregated over many different idiosyncratic volatility regimes. If 

firm-level volatilities become more dispersed—if idiosyncratic volatility is higher at some 

points in time than in others (Campbell et al., 2001; Herskovic et al., 2016)—we might 

expect to find skewness in pooled returns. However, at any particular point in time, 

skewness in the population of returns would be much less. 

To confront this concern, we compute skewness in the cross-section at each point 

in time. That is, we consider the measure (6). Figure 3 shows a histogram of these 

skewness observations. Consistent with time-varying idiosyncratic volatility, the majority 

of observations fall below the pooled statistic, with a large cluster close to zero. Even 

so, the data firmly reject the model. The dotted line in the figure shows the maximum 

skewness obtained in simulations in the model. The majority of data observations exceed 

the maximum value implied in the model simulations. Figure 2, which shows analogous 
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results for the 404 firms, tells a similar story. Finally, Table 7 shows that average cross-

sectional skewness, while below the pooled skewness, is far above what the model is 

capable of generating. We can therefore conclude that the lognormal model is not capable 

of generating the cross-sectional skewness observed in the data.11 

5.4 Skewness in long-horizon returns 

Motivated by findings of Bessembinder (2018), studies of the skewed size distribution in 

market capitalizations (Axtell, 2001; Gabaix, 2009), and granularity in returns (Gabaix, 

2011), we examine the implications of the models for long-horizon returns, namely the 

cumulative returns for asset j between the beginning and end of the sample: 

TY 
CRj,t,t+T = Rj,t+i. 

i=1 

We use this measure to construct the percent value created by each asset over total value: 

CRj,t,t+TPN . (22) 
k=1(CRk,t,t+T ) 

We compare the sum of these statistics for the top 10 firms in the model and in the data. 

All three models generate skewness in cumulative returns that exceed the values in 

the data. This comes about because all three models imply non-stationary firm shares. 

Because log cumulative returns are (close to) a random walk, firm shares in (22) tend to 

either zero or 1 over time. 

In the data, it is difficult to tell if firm shares are stationary or not.12 Moreover, the 

data equivalent of (22) uses market capitalization, not returns, leaving open the question 

of whether payouts, either in the form of dividends or special distributions, can reconcile 

11In this analysis, we simulate from a lognormal model with constant idiosyncratic volatilities. One 
might argue then that we are not perhaps spikes in idiosyncratic volatility as documented by Herskovic 
et al. (2016). Because of the infrequency of these spikes, however, they cannot account for the inability 
to match cross-sectional skewness throughout the data sample. 

12The question of firm size stationarity is also connected to the question of stationarity in top wealth 
shares. See Gomez (2019). 
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the model with the data. Ultimately, though, the models as stated imply that, over time, 

one firm will take over the economy with probability 1. To create stationary firm shares, 

one would most likely require a model where firms exit and other firms enter at, say, an 

average size. Such a model could potentially have asset pricing implications, which we 

leave for future work. 

6 Conclusion 

We have considered the implications of three types of skewness: time series, cross-sectional 

(pooled), and cross-sectional at a fixed point in time through the lens of a standard asset 

pricing model. Table 8 summarizes the models and the conclusions. All three models we 

consider are calibrated to match the equity premium and equity volatility. Interestingly, 

this is sufficient to match the low percentage of returns that exceed the riskfree rate, as 

well as skewness in long-horizon returns. However, non-normal positive shocks appear to 

be necessary to account for the high degree of skewness in the cross section. 

Cross-sectional skewness has implications beyond simply measurement. For example, 

several recent models explain asset pricing facts through the mechanism of innovation 

(Dou, 2017; Kogan et al., 2019; Garleanu and Panageas, 2018). Presumably, such innova-

tion begins at the level of individual firms, and understanding the degree of cross-sectional 

skewness can help to calibrate this. Moreover, the pricing of volatility risk remains a 

topic of active debate (Dew-Becker et al., 2019). To the extent that much of idiosyncratic 

volatility is in fact upside risk, as measured by skewness, this suggests a mechanism by 

which volatility may contribute positively to investment opportunities. We leave these 

topics to future research. 
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Table 1: Statistics on Pooled Monthly Level Returns 

All CRSP All CRSP 14,786 Select 404 Select 

(1926 - 2016) (1945 - 2016) (1973 - 2016) (1973 - 2016) 

Mean (in %) 1.118 1.297 1.332 1.331 

Median (in %) 0.000 0.000 0.000 0.936 

Std. Dev (in %) 17.83 16.82 17.70 10.27 

Skewness 6.335 5.987 5.986 1.321 

% Positive 48.40 48.91 48.94 54.51 

% ≥ 1-Month T-Bill 47.75 48.19 48.03 53.07 

% ≥ VW Mkt Return 46.34 46.71 47.11 50.11 

% ≥ EQ Mkt Return 45.83 46.19 47.01 49.26 

Source: CRSP 

Notes: The table reports selected statistics on pooled CRSP common stock monthly 
level returns for different time horizons and different universe of stocks. The first and 
second columns examine pooled monthly returns of all CRSP common stocks from July 
1926 to December 2016 and November 1945 to December 2016, respectively. The third 
column concerns pooled monthly returns of all CRSP common stocks with at least 60 
monthly returns from January 1973 to December 2016. The fourth column concerns 
pooled returns of all CRSP common stocks without missing data for monthly returns 
from January 1973 to December 2016. 
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Table 2: Skewness in Time-series, Cross-section, & Pooled Distribution of Returns 

Skewness Type Statistic 

404 
(1973.01 

Firms 
- 2016.12) 

14,786 Firms 
(1973.01 - 2016.12) 

skew[R] skew[log R] skew[R] skew[log R] 

Time-series 

Min. 

5th 

50th 

95th 

Max. 

-1.01 

-0.188 

0.362 

2.12 

7.58 

-4.02 

-1.13 

-0.204 

0.376 

1.64 

-3.66 

-0.179 

0.891 

3.63 

16.4 

-17.2 

-1.46 

0.021 

1.18 

6.33 

S&P500 -0.44 -0.71 -0.44 -0.71 

Cross-section 

Min. 

5th 

50th 

95th 

Max. 

-2.56 

-0.69 

0.69 

3.35 

12.9 

-10.1 

-1.61 

0.11 

1.67 

5.79 

-0.288 

0.393 

2.40 

8.49 

46.0 

-4.15 

-1.71 

-0.085 

1.52 

2.66 

Pooled 1.32 -0.42 5.99 -0.24 

Source: CRSP 

Notes: The table reports the skewness in the time-series, the cross-section, and the pooled 
distribution of monthly returns for different time horizons and different universe of stocks. 
The first and second data columns examine monthly returns of all CRSP common stocks 
without missing data for monthly returns from January 1973 to December 2016. The third 
and fourth data columns concern monthly returns of all CRSP common stocks with at least 
60 monthly returns from January 1973 to December 2016. For time-series skewness, we 
report the distribution across different assets as well as that of the S&P 500 during the 
same time period. For cross-sectional skewness, we report the distribution across different 
months for each relevant time period. 
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Table 3: Calibrated Parameters of the Model 

Variable Value 

x̄ 0.198 

λ̄ 0.083 
 βQβj , j 

 ϕ, ϕλ

Estimated from CAPM Regression 

0.988 

σc 0.0419 

σx 0.0693 

σi,j 

rf 

 σ2  Set to match = σ2 + β2  σ2
j i,j j M 

0.00395 

Additional Parameters for Lognormal-N 

ζ 0.045 

ζλ 0.045 

ν Set to λ̄ 

Additional Parameters for Lognormal-NP 

ζj
i (Simulation with 404 Firms) Drawn from a power-law distribution with mean 7ζ 

ζj
i (Simulation with 14,786 Firms) Drawn from a shifted power-law distribution 

with mean 15ζ and minimum 6.5ζ 

λi
j Set to 0.1 λ̄ 

Source: CRSP, Ken French’s Website 

g 
Notes: The table reports the calibrated parameters of the model, which is simulated at a 
monthly frequency. x̄ is chosen such that when xt is at its long-run mean, the maximal 

¯Sharpe ratio is 0.20. λ is set to 1 per year or 0.083 monthly. βj and βj
Q are estimated from 

a CAPM regression of log returns, and the persistence variables (φ, φλ) are set to match 
the autocorrelation of the price-dividend ratio. σc and σx are chosen to match the data 
explicitly following Lettau and Wachter (2007), and they are scaled by 0.7 in simulations for 
Lognormal-N and Lognormal-NP. Aggregate jump intensities (ζ, ζλ) are set to 0.045, while 
the idiosyncratic jump intensities are drawn independently across stocks from a power-law 
distribution. 
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Table 4: Inference on Market Returns 

Simulated Values Empirical Simulation 
Value Population 

Min 5th 50th 95th Max 

Panel A. Lognormal Model 

E[Rm] − 1 0.922 -1.79 -0.168 1.27 2.79 3.92 1.18 

σ[Rm] 4.55 4.04 4.23 4.52 4.89 5.47 4.57 

γT S [Rm] -0.518 -0.217 -0.056 0.130 0.293 0.488 0.120 

Panel B. Lognormal-N Model 

E[Rm] − 1 0.922 0.224 0.548 1.03 1.46 1.75 1.01 

σ[Rm] 4.55 3.52 3.68 3.94 4.23 4.39 3.98 

γT S [Rm] -0.518 -0.716 -0.549 -0.351 -0.147 0.013 -0.370 

Panel C. Lognormal-NP Model 

E[Rm] − 1 0.92 0.257 0.632 1.07 1.50 1.96 1.09 

σ[Rm] 4.55 3.46 3.68 3.94 4.22 4.36 3.92 

γT S [Rm] -0.518 -0.815 -0.579 -0.370 -0.156 -0.028 -0.366 

Source: CRSP and simulations 

Notes: We conduct 400 monthly simulations of the stock market for each type of 
model assuming 14,786 firms. Sampling distribution of each statistic is obtained 
from the simulations of the reference asset. The first column shows the statistic for 
the corresponding value in data where the moments are computed from the returns 
on Fama-French’s market portfolio; the next five columns show the distribution of 
the statistic obtained from the simulations, and the last column illustrates the 
statistic for the pooled values of 100 simulations. E[R] − 1 and σ[R] are reported 
in percentages. γTS [Rm] denotes the time-series skewness of returns on the market. 
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Table 5: Inference on Pooled Monthly Returns (Simulation with 404 Firms) 

Empirical Simulated Values Simulation 
Population Value Min 5th 50th 95th Max 

Panel A. Lognormal Model 

E[R] − 
σ]R] 
γCS [R] 
γCS [log 
% log R 
γT S ˜ [Rj ]

1 

R] 
> log Rf 

1.33 
10.3 
1.32 
-0.42 
54.5 
0.36 

-1.52 
9.79 
0.322 
-0.172 
40.1 
0.234 

-0.21 
9.95 
0.402 
-0.102 
45.6 
0.252 

1.30 
10.2 
0.48 
-0.021 
51.8 
0.275 

2.72 
10.4 
0.56 
0.052 
57.4 
0.301 

3.83 
10.8 
0.634 
0.114 
61.7 
0.321 

1.28 
10.2 
0.487 
-0.020 
49.4 
· 

Panel B. Lognormal-N Model 

E[R] − 
σ]R] 
γCS [R] 
γCS [log 
% log R 
γT S ˜ [Rj ]

1 

R] 
> log Rf 

1.33 
10.3 
1.32 
-0.42 
54.51 
0.362 

0.35 
9.69 
0.35 
-0.14 
48.1 
0.189 

0.633 
9.76 
0.382 
-0.119 
49.3 
0.202 

1.06 
9.89 
0.419 
-0.079 
51.2 
0.225 

1.46 
10.0 
0.455 
-0.045 
53.0 
0.245 

1.73 
10.1 
0.503 
-0.018 
54.2 
0.260 

1.05 
9.90 
0.420 
-0.080 
49.1 
· 

Panel C. Lognormal-NP Model 

E[R] − 
σ]R] 
γCS [R] 
γCS [log 
% log R 
γT S ˜ [Rj ]

1 

R] 
> log Rf 

1.33 
10.3 
1.32 
-0.42 
54.5 
0.362 

0.265 
11.5 
2.93 
0.752 
46.2 
0.503 

0.662 
11.7 
3.26 
0.944 
47.8 
0.568 

1.04 
12.0 
3.80 
1.08 
49.5 
0.706 

1.47 
12.2 
4.67 
1.22 
51.3 
0.893 

1.81 
12.6 
10.5 
1.33 
52.7 
1.01 

1.06 
11.9 
3.91 
1.08 
47.4 
· 

Source: CRSP and simulations 

Notes: We conduct 400 monthly simulations of the stock market for each type of model 
using the universe of 404 firms with no missing returns from January 1973 to December 
2016. Sampling distribution of each statistic is obtained from the simulations. The first 
column shows the statistic for the corresponding value in data; the next five columns 
show the distribution of the statistic obtained from the simulations, and the last column 
illustrates the statistic for the pooled values of 100 simulations. E[R] − 1 and σ[R] are 

γCS reported in percentages. denotes cross-sectional skewness across pooled returns, 
while γTS [Rj ] denotes the time-series skewness of returns for firm j. We report the 
γ̃TS [Rj ], the median value of γTS [Rj ] across the 404 firms. 
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Table 6: Inference on Pooled Monthly Returns (Simulation with 14,786 Firms) 

Empirical Simulated Values Simulation 
Value Min 5th 50th 95th Max Population 

Panel A. Lognormal Model 

E[R] − 1 
σ]R] 
γCS [R] 
γCS [log R] 
% log R > log Rf 

γT S [Rj ]˜

Panel B. Lognormal-N Model 

1.33 
17.7 
5.99 
-0.235 
48.0 
0.875 

-1.97 
16.3 
0.806 
-0.255 
40.5 
0.402 

-0.214 
16.5 
0.879 
-0.202 
45.3 
0.411 

1.37 
16.9 
0.953 
-0.144 
49.7 
0.424 

3.04 
17.3 
1.033 
-0.079 
54.3 
0.438 

4.30 
17.8 
1.10 
-0.035 
57.7 
0.467 

1.263 
16.8 
0.949 
-0.148 
51.7 
· 

E[R] − 1 
σ]R] 
γCS [R] 
γCS [log R] 
% log R > log Rf 

γT S [Rj ]˜

Panel C. Lognormal-NP Model 

1.33 
17.7 
5.99 
-0.235 
48.0 
0.875 

0.225 
16.2 
0.849 
-0.218 
46.6 
0.374 

0.570 
16.3 
0.879 
-0.200 
47.7 
0.386 

1.10 
16.5 
0.912 
-0.175 
49.2 
0.396 

1.59 
16.7 
0.950 
-0.153 
50.5 
0.406 

1.88 
16.9 
0.979 
-0.133 
51.29 
0.418 

1.07 
16.5 
0.910 
-0.178 
51.2 
· 

E[R] − 1 1.33 0.232 0.653 1.14 1.62 2.13 1.16 
σ]R] 17.7 17.5 17.7 17.9 18.1 18.3 17.9 
γCS [R] 5.99 5.13 5.34 5.77 6.48 15.2 5.91 
γCS [log R] -0.235 1.041 1.10 1.15 1.21 1.25 1.16 
% log R > log Rf 48.0 44.3 45.7 47.4 48.9 50.6 49.5 
γT S [Rj ]˜ 0.875 2.04 2.11 2.20 2.32 2.43 · 

Source: CRSP and simulations 

Notes: We conduct 400 monthly simulations of the stock market for each type of model 
using the universe of 14,786 firms with at least 60 monthly returns from January 1973 to 
December 2016. Sampling distribution of each statistic is obtained from the simulations. 
The first column shows the statistic for the corresponding value in data; the next five 
columns show the distribution of the statistic obtained from the simulations, and the 
last column illustrates the statistic for the pooled values of 100 simulations. E[R] − 1 
and σ[R] are reported in percentages. γCS denotes cross-sectional skewness across pooled 
returns, while γTS [Rj ] denotes the time-series skewness of returns for firm j. We report 
the γ̃TS [Rj ], the median value of γTS [Rj ] across the 14,786 firms. 
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Table 7: Inference on Monthly Cross-sectional Skew 

Empirical 
γ̃cs 

γ̃cs from Simulated Values % of Months with 
Empirical γcs 

Min 5th 50th 95th Max ≥ Max 

Panel A. Simulation with 404 Firms (1973.01 - 2016.12) 

Lognormal 0.234 0.252 0.275 0.301 0.321 64.8 

Lognormal-N 0.694 0.189 0.202 0.225 0.245 0.26 66.7 

Lognormal-NP 0.503 0.568 0.706 0.893 1.01 37.5 

Panel B. Simulation with 14,786 Firms (1973.01 - 2016.12) 

Lognormal 0.402 0.411 0.424 0.438 0.467 93.9 

Lognormal-N 2.400 0.374 0.386 0.396 0.406 0.418 94.5 

Lognormal-NP 2.04 2.11 2.20 2.32 2.43 49.8 

Source: CRSP and simulations 

Notes: We conduct 400 monthly simulations of the stock market for the three models. 
The first column shows the median monthly cross-sectional skewness (γ̃cs) for the cor-
responding universe of stocks and sample period. The next five columns illustrate the 
distribution of γ̃cs obtained from simulations. The final column reports the percentage 
of months in the sample period in which empirical γcs is greater than the maximum γ̃cs 

obtained from the simulations. 
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Table 8: Simulated Results from Each Model 

Stylized Facts Lognormal Lognormal-N Lognormal-NP 

A-1. Monthly Returns (Stocks) 

Risk Premium ◦ ◦ ◦ 

Volatility ◦ ◦ ◦ 

Positive TS Skewness ◦ ◦ ◦ 

Positive Pooled Skewness × × ◦ 

% > Risk-free Rate ◦ ◦ ◦ 

A-2. Monthly Returns (Market) 

Risk Premium ◦ ◦ ◦ 

Volatility ◦ ◦ ◦ 

Negative TS Skewness × ◦ ◦ 

B. Monthly Cross-section 

Positive CS Skewness × × ◦ 

C. Long-run Returns 

Positive CS Skewness ◦ ◦ ◦ 

Stationary Distribution of Firm Size × × × 

Source: CRSP, Simulations 

Notes: The table summarizes the performance of the three models in matching the 
observed stylized facts from data. Panel A-1 is relevant to moments of pooled monthly 
returns across stocks, and Panel A-2 pertains to analogous moments for the market 
returns. Panel B refers to the median monthly cross-sectional skewness, and Panel C 
pertains to distributions of long-run returns and firm sizes across all stocks. 
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Table 9: Percent of total increase in value accounted for by the top 10 
firms 

Simulated Values Empirical 
Value 

Min 5th 50th 95th Max 

Panel A. Simulation with 404 Firms (1973.01 - 2016.12) 

Lognormal 28.4 35.0 61.5 99.5 100.0 

Lognormal-N 31.06 25.4 34.4 51.2 83.5 97.0 

Lognormal-NP 30.2 40.4 60.9 88.7 98.4 

Panel B. Simulation with 14,786 Firms (1973.01 - 2016.12) 

Lognormal 16.4 24.5 65.0 100.0 100.0 

Lognormal-N 16.24 17.7 27.3 50.8 90.4 100.0 

Lognormal-NP 18.5 30.3 56.7 93.1 100.0 

Source: CRSP and simulations 

Notes: We conduct 400 monthly simulations of the stock market for the 
three models. For each simulation, we examine the percentage of the 
total increase in value contributed by the top ten firms, where we mea-
sure the increase in cumulative returns. Data values assume we begin 
with an equal-weighted portfolio, and the sampling distributions of the 
percentages are obtained from the simulations. A greater percentage 
contributed by the top ten firms implies a greater asymmetry in the 
distribution of long-term returns. 

31 



1929 1939 1949 1959 1969 1979 1989 1999 2009 2019

1000

2000

3000

4000

5000

6000

7000

8000

Nu
m

be
r o

f S
to

ck
s

Nasdaq is founded →

Figure 1: Historical Number of CRSP Common Stocks 
On the first day of each month from July 1926 to December 2016, we count the number of 
unique common stocks in the cross-section, as available in CRSP. The jump on January 
1973, from 2,623 to 5,494, roughly corresponds to the establishment of Nasdaq in February 
of 1971. 
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Figure 2: Distribution of Monthly Cross-sectional Skewness (404 Firms) 
The figure illustrates the distribution of monthly cross-sectional skewness, defined as the 
skewness of monthly level returns for the cross-section of firms in each given month. The 
graph pertains to set of 404 firms without missing data for monthly returns from January 
1973 to December 2016. The vertical line on the graph represents the maximum of the 
average monthly cross-sectional skewness obtained from the 400 simulations. 
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Figure 3: Distribution of Monthly Cross-sectional Skewness (14,786 Firms) 
The figure illustrates the distribution of monthly cross-sectional skewness, defined as the 
skewness of monthly level returns for the cross-section of firms in each given month. The 
graph pertains to set of 14,786 firms with at least 60 monthly returns from January 1973 
to December 2016. The vertical line on the graph represents the maximum of the average 
monthly cross-sectional skewness obtained from the 400 simulations. 
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