
Predicting Returns with Text Data∗ 

Zheng Tracy Ke 

Department of Statistics 

Harvard University 

Bryan Kelly 

Yale University, AQR Capital 

Management, and NBER 

Dacheng Xiu 

Booth School of Business 

University of Chicago 

May 14, 2019 

Abstract 

We introduce a new text-mining methodology that extracts sentiment information from news 

articles to predict asset returns. Unlike more common sentiment scores used for stock return 

prediction (e.g., those sold by commercial vendors or built with dictionary-based methods), our 

supervised learning framework constructs a sentiment score that is specifically adapted to the 

problem of return prediction. Our method proceeds in three steps: 1) isolating a list of sentiment 

terms via predictive screening, 2) assigning sentiment weights to these words via topic modeling, 

and 3) aggregating terms into an article-level sentiment score via penalized likelihood. We derive 

theoretical guarantees on the accuracy of estimates from our model with minimal assumptions. In 

our empirical analysis, we text-mine one of the most actively monitored streams of news articles in 

the financial system—the Dow Jones Newswires—and show that our supervised sentiment model 

excels at extracting return-predictive signals in this context. 
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1 Introduction 

Advances in computing power have made it increasingly practicable to exploit large and often un-

structured data sources such as text, audio, and video for scientific analysis. In the social sciences, 

textual data is the fastest growing data form in academic research. The numerical representation 

of text as data for statistical analysis is, in principle, ultra-high dimensional. Empirical research 

seeking to exploit its potential richness must also confront its dimensionality challenge. Machine 

learning offers a toolkit for tackling the high-dimensional statistical problem of extracting meaning 

from text for explanatory and predictive analysis. 

While the natural language processing and machine learning literature is growing increasingly 

sophisticated in its ability to model the subtle and complex nature of verbal communication, usage of 

textual analysis in empirical finance is in its infancy. Text has most commonly been used in finance 

to study the “sentiment” of a given document, and this sentiment has been most frequently measured 

by weighting terms based on a pre-specified sentiment dictionary (e.g., the Harvard-IV psychosocial 

dictionary) and summing these weights into document-level sentiment scores. Document sentiment 

scores are then used in a secondary statistical model for investigating a financial research question 

such as “how do asset returns associate with media sentiment?” 

Highly influential studies in this area include Tetlock (2007) and Loughran and McDonald (2011). 

These papers manage the dimensionality challenge by restricting their analysis to words in pre-

existing sentiment dictionaries and using ad hoc word-weighting schemes. This approach has the 

great advantage that it allows researchers to make progress on understanding certain aspects of the 

data without taking on the (often onerous) task of estimating a model for a new text corpus from 

scratch. But it is akin to using model estimates from a past study to construct fitted values in a new 

collection of documents being analyzed. 

The goal of this paper is to demonstrate how basic machine learning techniques can be used to 

understand the sentimental structure of a text corpus without relying on pre-existing dictionaries. 

The method we suggest has three main virtues. The first is simplicity—it requires only standard 

econometric techniques like correlation analysis and maximum likelihood estimation. Second, our 

method requires minimal computing power—it can be run with a laptop computer in a matter of 

minutes for text corpora with millions of documents. Third, and most importantly, it allows the 

researcher to construct a sentiment scoring model that is specifically adapted to the context of the 

dataset at hand. This frees the researcher from relying on a pre-existing sentiment dictionary that 

was originally designed for different purposes. A central hurdle to testing theories of information 

economics is the difficulty of quantifying information. Our estimator is a sophisticated (yet easy to 

use) tool for measuring the information content of text documents that opens new lines of research 

into empirical information economics. 

Our empirical analysis revisits perhaps the most commonly studied text-based research question 

in finance, the extent to which business news explains and predicts observed asset price variation. 

We analyze the machine text feed and archive database of the Dow Jones Newswires, which is widely 

subscribed and closely monitored by market participants, and available over a 38-year time span. 
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Its articles are time-stamped and tagged with identifiers of firms to which an article pertains. Using 

these identifiers, we match articles with stock return data from CRSP in order to model stock-level 

return behavior as a function of a Newswire content. We then learn the sentiment scoring model from 

the joint behavior of article text and stock returns. This is a key aspect of our approach—learning 

the sentiment scoring model from the joint behavior of article text and stock returns—rather than 

taking sentiment scores off the shelf. 

Our estimated model isolates an interpretable and intuitive list of positive and negative sentiment 

words and their associated sentiment scores. We demonstrate the predictive capacity of our model 

through a simple trading strategy that buys assets with positive recent news sentiment and sells 

assets with negative sentiment. The portfolio based on our model delivers excellent risk-adjusted 

out-of-sample returns, and outperforms a similar strategy based on scores from RavenPack (the 

industry-leading commercial vendor of financial news sentiment scores). 

We compare the price impact of “fresh” versus “stale” news by devising a measure of article 

novelty (its cosine distance from the language in articles about the same stock over the preceding 

week). While even stale news significantly correlates with future price changes, the price effect in 

the first day after news arrival is 70% larger for fresh news. And while the effects of stale news are 

fully reflected in prices within two days of arrival, it takes four days for fresh news to be completely 

assimilated. Likewise, we study the differences in price assimilation of news based on stock attributes. 

We find that price responses to news are roughly four times as large for smaller (below NYSE median) 

and more volatile (above median) stocks, and that it takes roughly twice as long for their news to 

be fully reflected in prices. 

Unlike many commercial platforms or most deep learning approaches which amount to black 

boxes for their users, the supervised learning approach we propose is entirely “white box.” We call 

our procedure SSESTM (pronounced “system,” for Supervised Sentiment Extraction via Screening 

and Topic Modeling). The model consists of three parts, and basic machine learning strategies play 

a central role in each. 

The first step isolates the most relevant features from a very large vocabulary of terms. The 

vocabulary is derived from the bag-of-words representation of each document as a vector of term 

counts. We take a variable selection approach to extracting a comparatively small number of terms 

that are likely to be informative for asset returns. In this estimation step, variable selection via 

correlation screening is the necessary machine learning ingredient for fast and simple estimation of 

our reduced-dimension sentiment term list. The idea behind screening is to find individual terms— 

positive or negative—that most frequently coincide with returns of the same sign. It is a natural 

alternative to regression and other common dimension reduction techniques (such as principal com-

ponents analysis) which behave poorly when confronted with the high dimensionality and sparsity 

challenges of text data. 

The second step is to assign term-specific sentiment weights based on their individual relevance 

for the prediction task. Text data is typically well approximated by Zipf’s law, which predicts 

a small number of very high-frequency terms and a very large number of low-frequency terms. 

While existing finance literature recognizes the importance of accounting for vast differences in term 
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frequencies when assigning sentiment weights, the ultimate choice of weights has typically been ad 

hoc (e.g., via term frequency-inverse document frequency weighting, or “tf-idf”). We instead use a 

likelihood-based, or “generative,” model to account for the extreme skewness in term frequencies. 

The specific machine learning tool we apply in this component is a supervised topic model. For the 

sake of simplicity and computational ease, and because it is well adapted to our purposes, we opt for 

a model with only two topics—one that describes the frequency distribution of positive sentiment 

terms, and one for negative sentiment words. 

Finally, we use the estimated topic model to assign an article-level sentiment score. When 

aggregating to an article score, we use the internally consistent likelihood structure of the model 

to account for the severe heterogeneity in both the frequency of words as well as their sentiment 

weights. To robustify the model, we design a penalized maximum likelihood estimator with a single 

unknown parameter to estimate for each article. A Bayesian interpretation of the penalization is to 

impose a Beta-distributed prior on the sentiment score that centers at 1/2. That is, our estimation 

begins from the prior that an article is sentiment neutral. 

We establish the theoretical underpinnings of the SSESTM algorithm. In particular, we shed 

light on its biases (if any) and statistical efficiency, and characterize how these properties depend 

on the length of the dictionary, the number of news articles, and the average number of words per 

article. 

This paper contributes to a nascent literature using textual analysis via machine learning for 

financial research. Most prior work using text as data for finance and accounting research does 

little, if any, direct statistical analysis of text. In perhaps the earliest work on text mining for 

return prediction, Cowles (1933) manually reads and classifies editorials of The Wall Street Journal 

as bullish, bearish, or neutral. He finds that a trading strategy that follows editor recommendations 

destroys value in the 1902-1929 sample. More recent research relies largely on sentiment dictionaries 

(see Loughran and Mcdonald, 2016, for a review). These studies generally find that dictionary-based 

news sentiment scores are statistically significant predictors for future returns, though the economic 

magnitudes tend to be small. For example, applying the Harvard-IV psychosocial dictionary to a 

subset of articles from The Wall Street Journal, Tetlock (2007) finds that a one standard deviation 

increase in pessimism predicts an 8.1 basis point decline in the Dow Jones Industrial Average the 

following day (this is in-sample). Loughran and McDonald (2011) create a new sentiment dictionary 

specifically designed for the context of finance. They analyze 10-K filings and find that sentiment 

scores from their dictionary have a higher correlation with filing returns than scores based on Harvard-

IV. They do not, however, explore predictive performance or portfolio choice. In contrast with this 

literature, we develop a machine learning method to build context-specific sentiment scores. We 

construct and evaluate the performance of trading strategies that exploit our sentiment estimates, 

and find large economic gains, particularly out-of-sample. 

A few exceptions in the finance literature use machine learning to analyze text, and are surveyed 

in Gentzkow et al. (forthcoming). Using a Näıve Bayes approach, Antweiler and Frank (2005) find 

that internet stock messages posted on Yahoo Finance and Raging Bull for about 45 companies help 

predict market volatility, and the effect on stock returns is statistically significant but economically 
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small. Other related work includes Li (2010), Jegadeesh and Wu (2013), and Huang et al. (2014). 

Manela and Moreira (2017) use support vector regression to relate frontpage text of The Wall Street 

Journal to the VIX volatility index. As Loughran and Mcdonald (2016) note, Näıve Bayes involves 

thousands of unpublished rules and filters to measure the context of documents, and hence is opaque 

and difficult to replicate. Lack of transparency is a research limitation of machine learning methods 

more generally. In contrast, our model is generative, transparent, tractable, and accompanied by the-

oretical guarantees. Our method is closer to modern text mining algorithms in computer science and 

machine learning, such as latent Dirichlet allocation (LDA, Blei et al., 2003) and its descendants, and 

vector representations of text such as word2vec (Mikolov et al., 2013). The key distinction between 

our model and many such machine learning approaches is that our method is supervised and thus 

customizable to specific prediction tasks. In this vein, our model is most similar to Gentzkow et al. 

(2019), who develop a supervised machine learning approach to study partisanship in congressional 

speech. 

Finally, our research relates more broadly to a burgeoning strand of literature that applies machine 

learning techniques to asset pricing problems. In particular, Gu et al. (2018) review a suite of 

machine learning tools for return prediction using well established numerical features from the finance 

literature.1 They find that some of the best performing numerical predictors are technical indicators, 

such as momentum and reversal patterns in stock prices. Our paper uses alternative data—news 

text—whose dimensionality vastly exceeds that used for return prediction in past work. And, unlike 

technical indicators that are difficult to interpret, the features in our analysis are counts of words, 

and are thus interpretable. 

The rest of the paper is organized as follows. In Section 2, we set up the model and present our 

methodology. Section 3 conducts the empirical analysis. Section 4 concludes. The appendix contains 

the statistical theory, mathematical proofs, and Monte Carlo simulations. 

2 Methodology 

To establish notation, consider a collection of n news articles and a dictionary of m words. We record 

the word (or phrase) counts of the ith article in a vector di ∈ Rm 
+ , so that di,j is the number of time 

word j occurs in article i. In matrix form, this is an n × m document-term matrix, D = [d1, ..., dn]0 . 

We occasionally work with a subset of columns from D, where the indices of columns included in the 

subset are listed in the set S. We denote the corresponding submatrix as D·,[S]. We then use di,[S] 
to denote the row vector corresponding to the ith row of D·,[S]. 

Articles are tagged with the identifiers of stocks mentioned in the articles. For simplicity, we 

study articles that correspond to a single stock,2 and we label article i with the associated stock 

return (or its idiosyncratic component), yi, on the publication date of the article. 

1Other examples include Freyberger et al. (2017), Kozak et al. (2017), Kelly et al. (2017), and Feng et al. (2017). 
2While this assumption is a limitation of our approach, the large majority of articles in our sample are tagged to a 

single firm. In general, however, it would be an advantage to handle articles about multiple firms. For instance, Apple 
and Samsung are competitors in the cellphone market, and there are news articles that draw a comparison between 
them. In this case, the sentiment model requires more complexity, and we leave such extensions for future work. 
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2.1 Model Setup 

We assume each article possesses a sentiment score pi ∈ [0, 1]; when pi = 1, the article sentiment 

is maximally positive, and when pi = 0, it is maximally negative. Furthermore, we assume that pi 
serves as a sufficient statistic for the influence of the article on the stock return. That is, 

di and yi are independent given pi. (1) 

Along with the conditional independence assumption, we need two additional components to 

fully specify the data generating process. One governs the distribution of the stock return yi given 

pi, and the other governs the article word count vector di given pi. 

For the conditional return distribution, we assume 

� � 
P sgn(yi) = 1 = g(pi), for a monotone increasing function g(·), (2) 

where sgn(x) is the sign function that returns 1 if x > 0 and 0 otherwise. Intuitively, this assumption 

states that the higher the sentiment score, the higher the probability of realizing a positive return. 

Note that this modeling assumption is rather weak—we do not need to specify the full distribution 

of yi or the particular form of g(·) to establish our theoretical guarantees below. 

We now turn to the conditional distribution of word counts in an article. We assume the dictionary 

has a partition: 

{1, 2, . . . ,m} = S ∪ N, (3) 

where S is the index set of sentiment-charged words, N is the index set of sentiment-neutral words, 

and {1, . . . ,m} is the set of indices for all words in the dictionary (S and N have dimensions |S| and 

m − |S|, respectively). Likewise, di,[S] and di,[N ] are the corresponding subvectors of di and contain 

counts of sentiment-charged and sentiment-neutral words, respectively. 

We assume that di,[S] and di,[N ] are independent of each other. The distribution of sentiment-

neutral counts, di,[N ], is essentially a nuisance, and due to its independence from the vector of interest, 

di,[S], it suffices for our purposes to leave di,[N ] unmodeled.
3 

We assume that sentiment-charged word counts, di,[S], are generated by a mixture multinomial 

distribution of the form � � 
di,[S] ∼ Multinomial si, piO+ + (1 − pi)O− , (4) 

where si is the total count of sentiment-charged words in article i, which determines the scale of the 

multinomial. Next, we model the probabilities of individual word counts with a two-topic mixture 

model. O+ is a probability distribution over words—it is an |S|-vector of non-negative entries with 

unit `1-norm. O+ is a “positive sentiment topic,” and describes expected counts for words in a 

maximally positive sentiment article (one for which pi = 1). Likewise, O− is a “negative sentiment 

3We may further model sentiment-neutral counts, di,[N ], using a standard K-topic model (Hofmann, 1999; Blei 
et al., 2003). This is, however, unnecessary in our setting due to our focus on sentiment extraction. 
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Figure 1: Model Diagram 

Realized article di Realized return ri 

Distribution 
Return | Sentiment 

Prob(ri > 0|pi) = g(pi) 

Distribution 
Text | Sentiment 

Prob(di|pi) = 
MN(piO+ + [1 − pi]O−) 

Purely Positive 
Article Word 

Distribution: O+ 

Purely Negative 
Article Word 

Distribution: O− 

Underlying Sentiment 
pi 

Mixture 
Model 

p̂i 

Note: Illustration of model structure. 

topic” that describes the distribution of word probabilities in maximally negative articles (those for 

which pi = 0). At intermediate values of sentiment 0 < pi < 1, word probabilities are a convex 

combination of those from the positive and negative sentiment topics. A word j is a “positive word” 

if the jth entry of (O+ − O−) is positive, i.e., this word has a larger weight in the positive sentiment 

topic than in the negative sentiment topic. Similarly, a word j is a “negative word” if the jth entry 

of (O+ − O−) is negative. 

Figure 1 provides a visualization of the model’s structure. The data available to infer sentiment 

are in the box at the top of the diagram, and include not only the realized document text, but 

also the realized event return. The important feature of this model is that, for a given event i, the 

distribution of sentiment word counts and the distribution of returns are linked through the common 

parameter, pi. Returns supervise the estimation and help identify which words are assigned to the 

positive versus negative topic. A higher pi maps monotonically into a higher likelihood of positive 

returns, and thus words that co-occur with positive returns are assigned high values in O+ and low 

values in O−. 

Our objective is to learn the model parameters, O+, O−, and pi. In what follows, we detail three 

steps of the SSESTM procedure: 1) isolating the set of sentiment words, S, 2) estimating the topic 

parameters O+ and O−, and 3) estimating the article-level sentiment score pi. 
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2.2 Screening for Sentiment-Charged Words 

Sentiment-neutral words act as noise in our model, yet they are likely to dominate the data both 

in number of terms and in total counts. Estimating a topic model for the entire dictionary that 

accounts for the full joint distribution of sentiment-charged versus sentiment-neutral terms is at the 

very best a very challenging statistical problem, and at worst may suffer from severe inefficiency and 

high computational costs. Instead, our strategy is to isolate the subset of sentiment-charged words, 

and then estimate a topic model to this subset alone (leaving the neutral words unmodeled). 

To accomplish this, we need an effective feature selection procedure to tease out words that carry 

sentiment information. We take a supervised approach that leverages the information in realized 

stock returns to screen for sentiment-charged words. Intuitively, if a word frequently co-occurs in 

articles that are accompanied by positive returns, that word is likely to convey positive sentiment. 

Our screening procedure first calculates the frequency with which word j co-occurs with a positive 

return. This is measured as 

# articles including word j AND having sgn(y) = 1 
fj = (5)

# articles including word j 

for each j = 1, ..., m. Equivalently, fj is the slope coefficient of a cross-article regression of sgn(yi) 

on a dummy variable for whether word j appears in article i. This approach is known as marginal 

screening in the statistical literature (Fan and Lv, 2008). In comparison with the more complicated 

multivariate regression with sparse regularization, marginal screening is not only simple to use but 

also has a theoretical advantage when the signal to noise ratio is weak (Genovese et al., 2012; Ji and 

Jin, 2012). 

Next, we set an upper threshold, α+, and define all words having fj > α+ as positive sentiment 

terms. Likewise, any word satisfying fj < α− for some lower threshold, α−, is deemed a negative 

sentiment term. Finally, we select a third threshold, κ, on the count of articles including word j (i.e., 

the denominator of fj , which we denote as kj ). Some sentiment words may appear infrequently in 

the data sample, in which case we have very noisy information about their relevance to sentiment. 

By restricting our analysis to words for which kj > κ, we ensure minimal statistical accuracy of 

the frequency estimate, fj . The thresholds (α+, α−, κ) are hyper-parameters that can be tuned via 

cross-validation.4 

Given (α+, α−, κ), we construct the list of sentiment-charged terms that appropriately exceed 

these thresholds, which constitutes our estimate of the set S:5 

4The definition in (5) is based on the number of articles, instead of the total number of word counts. In theory, 
one could threshold based on word count rather than article count, and this would have the same consistency property 
as our proposed method. 

5In principle, we can combine our vocabulary with words identified in pre-existing sentiment dictionaries like 
Harvard-IV. To do this, one would expand Sb to Se according to: � 

Se = Sb ∪ 1 ≤ j ≤ m : max{` j , 1 − ` j } ≥ β . (6) 

where ` ∈ [0, 1]m is a vector describing sentiment scores in the pre-existing dictionary, and β is a tunable threshold. 
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� 	
Sb = j : fj ≥ 1/2 + α+, or fj ≤ 1/2 − α− ∩ {j : kj ≥ κ}. (7) 

Algorithm 1 in Appendix A summarizes our screening procedure. Theorem C.2 of Appendix C 

establishes the procedure’s “sure-screening” property, by which P(Sb = S) approaches one as the 

number of articles, n, and the number of words, m, jointly go to infinity (see, e.g. Fan and Lv, 2008). 

2.3 Learning Sentiment Distributions 

Once we have identified the relevant wordlist S, we arrive at the (now simplified) problem of fitting 

a two-topic model to the sentiment-charged counts. We can gather the two topic vectors in a matrix 

O = [O+, O−], which determines the data generating process of the counts of sentiment-charged 

words in each article. 

O captures information on both the frequency of words as well as their sentiment. It is helpful, 

in fact, to reorganize the topic vectors into a vector of frequency, F , and a vector of tone, T : 

1 1 
F = (O+ + O−), T = (O+ − O−), (8)

2 2 

If a word has a larger value in F , it appears more frequently overall. If a word has a larger value in 

T , its sentiment is more positive. 

Classical topic models (Hofmann, 1999; Blei et al., 2003) amount to unsupervised reductions of 

the text, as these models do not assume availability of training labels for documents. Our setting 

differs from the classical setting because each Newswire is associated with a stock return. The returns 

contain information about the sentiment of articles, and hence returns serve as training labels. In a 

low signal-to-noise ratio environment, there are often large efficiency gains from exploiting document 

labels via supervised learning. We therefore take a supervised learning approach to estimate O (or, 

equivalently, to estimate F and T ). 

In our model, the parameter pi is the article’s sentiment score, as it describes how heavily the 

article tilts in favor of the positive word distribution. Suppose, for now, that we observe these 

sentiment scores for all articles in our sample. Let de 
i,[S] = di,[S]/si denote the vector of word 

frequencies. Model (4) implies that 

di,[S]Ede 
i,[S] = E = piO+ + (1 − pi)O−, 

si 

or, in matrix form, " # 
· · ·0 p1  

E  
D e p
= OW, where W n

= , and De = [ de1, de2, . . . , de 0
n] . 

1 − p1 · · · 1 − pn 

Based on this fact, we propose a simple approach to estimate O via a regression of De on W . Note 

that we do not directly observe De (because S is unobserved) or W . We estimate De by plugging in Sb 

from Algorithm 1. To estimate W , we use the standardized ranks of returns as sentiment scores for 
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all articles in the training sample. More precisely, for each article i in the training sample i = 1, ..., n, 

we set 
rank of yi in {yl}n 

l=1pbi = . (9) 
n 

and use these estimates to populate the matrix Wc. Intuitively, this estimator leverages the fact 
that the return yi is a noisy signal for the sentiment of news in article i. This estimator, while 

obviously coarse, has a number of attractive features. First, it is simple to use and sufficient to 

achieve statistical guarantees for our algorithm under weak assumptions. Second, it is robust to 

outliers that riddle the return data. bAlgorithm 2 in Appendix A summarizes our procedure for estimating O, and Theorem C.3 

in Appendix C precisely characterizes the statistical accuracy of the algorithm. The algorithm 

consistently recovers the sentiment word frequency distribution, F . Its accuracy depends on the bquality of the wordlist S obtained from screening and the approximation quality of {pbi}n fori=1 

{pi}n The estimate of the tone vector, T , suffers a small bias that depends on the correlationi=1. 

between the true sentiment and the estimated sentiment, which takes the form 

n � �� �X12 1 1 
ρ = pi − pbi − . (10) 

n 2 2 
i=1 

Specifically, Theorem C.3 shows that the estimator Tb converges to ρT . Therefore, when the estima-

tion quality of pb is high, the bias is small. However, this scale bias has no impact on practical usage 

of the estimator. In practice, we are interested in the relative sentiment of words, not their absolute 

sentiment. The scalar multiple ρ washes out entirely when considering relative sentiment. 

Given n articles realized from our topic model, with a vocabulary of size |S| (i.e., the number of 
words in S), and an average article length (denoted s̄), we show the convergence rate of the estimation 

errors of F and ρT are bounded by 
p
|S|/(ns̄), up to a logarithmic factor. In our empirical study, 

the identified sentiment dictionary contains approximately 100 to 200 words, yet their total count in 

one article is typically below 20. So we are primarily interested in the “short article” case, that is, 

s/¯ |S| ≤ C for some constant C, as opposed to the “long article” case, in which s/¯ |S| → ∞. As shown 

in Ke and Wang (2017), the classical unsupervised approach converges at a slower rate than ours in 

the case of short articles. The statistical efficiency gain of supervised learning in the short article 

setting is the central consideration behind our choice of a supervised topic modeling approach. 

2.4 Scoring New Articles 

The preceding steps construct estimators Sb and Ob. We now discuss how to estimate the sentiment 

pi for a new article i that is not included from the training sample. 

Let di be the article’s count vector and let si be its total count of sentiment-charged words. Given 

our model (4), � � 
di,[S] ∼ Multinomial si, piO+ + (1 − pi)O− , 

and given Sb and Ob, we can estimate pi using maximum likelihood estimation (MLE). While al-
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ternative estimators, such as linear regression, are also consistent, we use MLE for its statistical 

efficiency. 

We add a penalty term, λ log(pi(1−pi)), in the likelihood function, which is described explicitly in 

(A.3) of Algorithm 3. The role of the penalty is to help cope with the limited number of observations 

and the low signal-to-noise ratio inherent to return prediction. Imposing the penalty shrinks the 

estimate towards a neutral sentiment score of 1/2, where the amount of shrinkage depends on the 
6magnitude of λ. This penalized likelihood approach is equivalent to imposing a Beta distribution 

prior on the sentiment score. Most articles have neutral sentiment, and the beta prior ensures that 

this is reflected in the model estimates. 

Theorem C.4 in Appendix C provides a statistical guarantee for our scoring procedure. Not 

surprisingly given our earlier discussion, the estimator is inconsistent with respect to pi, and instead� � 
converges to 1 

2 +
1 
ρ pi − 1 

2 instead. The inflation factor of 1/ρ arises from the bias in estimating 

T . Our penalization is expressly intended to help deflate these estimates. And, as emphasized 

earlier, this has no impact on the relative sentiment scores of new articles (or on our application to 

portfolio choice). In terms of the convergence rate, besides the estimation error accumulated from 
√ 

the previous two steps, an additional error of magnitude 1/ s appears. Intuitively, if the article 

contains very few sentiment words, its sentiment score will not be accurately recovered. And again, 

in such circumstances, penalization serves to improve efficiency. 

3 Empirical Analysis 

In this section, we apply our text-mining framework to the problem of return prediction for in-

vestment portfolio construction. This application serves two purposes. First, it offers an empirical 

demonstration of the predictive content in our sentiment measure. Second, it translates the extent 

of predictability from statistical terms such as predictive R2 , into the more meaningful economic 

terms of growth rates in an investor’s savings portfolio attributable to exploitation of text-based 

information. 

To develop hypotheses, it is useful to consider the potential sources of time series return pre-

dictability from news text. A natural null hypothesis for any return prediction analysis is the efficient 

markets hypothesis (Fama, 1970). Market efficiency predicts that the expected return is dominated 

by unforecastable news, as this news is rapidly (in its starkest form, immediately) and fully incor-

porated in prices. The maintained hypothesis of our research is that information in news text is not 

fully absorbed by market prices instantaneously, for reasons such as limits-to-arbitrage and rationally 

limited attention. As a result, information contained in news text is predictive of future asset price 

paths, at least over short horizons. While this alternative hypothesis is by now uncontroversial, it 

is hard to overstate its importance, as we have much to learn about the mechanisms through which 

information enters prices and the frictions that impede these mechanisms. Our prediction analysis 

adds new evidence to the empirical literature investigating the alternative hypothesis. In particular, 

6The single penalty parameter λ is common across articles. This implies that the relative ranks of article sentiment 
are not influenced by penalization, which is the key information input into the trading strategy in our empirical analysis. 
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Table 1: Summary Statistics 

Filter Remaining Sample Size Observations Removed 
Total Number of Dow Jones Newswire Articles 31, 492, 473 

Combine chained articles 22, 471, 222 9, 021, 251 

Remove articles with no stocks tagged 14, 044, 812 8, 426, 410 

Remove articles with more than one stocks tagged 10, 364, 189 3, 680, 623 

Number of articles whose tagged stocks have 
three consecutive daily returns from CRSP 6,540,036 
between Jan 1989 and Dec 2012 

Number of articles whose tagged stocks have 6,790,592 
open-to-open returns from CRSP since Feb 2004 

Number of articles whose tagged stocks have 6,708,077 
high-frequency returns from TAQ since Feb 2004 

Note: In this table, we report the impact of each filter we apply on the number of articles in our sample. The sample 
period ranges from January 1, 1989 to July 31, 2017. The CRSP three-day returns are only used in training and 
validation steps, so we apply the CRSP filter only for articles dated from January 1, 1989 to December 31, 2012. The 
open-to-open returns and intraday returns are used in out-of-sample periods from February 1, 2004 to July 31, 2017. 

we bring to bear information from a rich and hitherto unstudied news text data set. Our methodolog-

ical contribution is a new toolkit for that makes it feasible to conduct a coherent statistical analysis 

of such complex and unstructured data. An ideal (and hopefully realizable) outcome of our research 

agenda is to understand how news influences investors’ belief formation and then enters prices. 

3.1 Data and Pre-processing 

Our text data set is the Dow Jones Newswires Machine Text Feed and Archive database. It contains 

real-time news feeds from January 1, 1989 to July 31, 2017, amounting to 22,471,222 unique articles 

(after combining “chained” articles). Approximately 62.5% news articles are assigned one or more 

firm tags describing the primary firms to which the article pertains. To most closely align the data 

with our model structure, we remove articles with more than one firm tag, or 16.4% articles, arriving 

at a sample of 10,364,189 articles. We track the date, exact timestamp, tagged firm ticker, headline, 

and article body of each article. 

Using ticker tags, we match each article with tagged firm’s market capitalization and adjusted 

daily close-to-close returns from CRSP. We do not know, a priori, the timing by which potential new 

information in a Newswire article gets impounded in prices. If prices adjust slowly, then it makes 

sense to align articles with contemporaneous or even future returns. Newswires are a highly visible 

information source for market participants, so presumably any delay in price response would be 

short-lived, perhaps on the order of a day. Or, it could be the case that Newswires are a restatement 

of recently revealed information, in which case news is best aligned with prior day returns. 

Without better guidance on timing choice, we train the model by merging articles published 
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Figure 2: Average Article Counts 

Average Number of Articles by Clock Time 
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Note: The top figure plots the average numbers of articles per half an hour (24 hour EST time) from January 1, 1989 
to July 31, 2017. The bottom figure plots the average numbers of articles per calendar day. Averages are taken over 
the full sample from January 1, 1987 to July 31, 2017. 

between 4pm of day t − 1 and 4pm of day t with the tagged firm’s three-day return from close on day 

t − 2 to close on day t + 1.7 Note that this timing is for sentiment training purposes only. In order 

to devise a trading strategy, for example, it is critical to align sentiment estimates for an article only 

with future realized returns (as we discuss further below). 

For some of our analyses we study the association between news text and intradaily returns. For 

this purpose, we merge articles with transaction prices from the NYSE Trade and Quote (TAQ) 

7For news that occur on holidays or weekends, we use the next available trading day as the current day t and the 
last trading day before the news as day t − 1. 
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Figure 3: Annual Time Series of the Total Number of Articles 
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Note: This figure plots the annual time series of the total number of articles from January 1987 to July 2017. We only 
provide an estimate for 2017 (highlighted in red), by annualizing the total number of articles of the few months we 
observe, since we do not have a whole year’s data for this year. 

database. Open-to-open and intraday returns are only used in our out-of-sample analysis from 

February 2004 to July 2017. We start the out-of-sample testing period from February 2004 because, 

starting in January 17, 2004, the Newswire data is streamlined and comes exclusively from one data 

source. Prior to that, Newswires data are derived from multiple news sources, which among other 

things can lead to redundant coverage of the same event. Although it does not affect in-sample 

training and validation, this could have an adverse impact on our out-of-sample analysis that is best 

suited for “fresh” news. In summary, Table 1 lists step-by-step details for our sample filters. 

The top panel of Figure 2 plots the average number of articles in each half hour throughout a 

day. News articles arrive more frequently prior to the market open and close. The bottom panel 

plots the average number of articles per day over a year. It shows leap-year and holiday effects, as 

well as quarterly earnings season effects corresponding to a rise in article counts around February, 

May, August, and November. Figure 3 plots the total number of news articles per year in our 

sample. There is a steady increase in the number of news articles until around 2007. Some news 

volume patterns reflect structural changes in data sources. According to the Dow Jones Newswires 

user guide, there were three historical merges of news sources which occurred on October 31, 1996, 

November 5, 2001, and January 16, 2004, respectively. 

Next, we follow common steps from the natural language processing literature to clean and 

structure news articles.8 The first step is normalization, including 1) changing all words in the article 

to lower case letters; 2) expanding contractions such as “haven’t” to “have not”; and 3) deleting 

numbers, punctuations, special symbols, and non-English words.9 The second step is stemming and 

8We use the natural language toolkit (NLTK) in Python to preprocess the data. 
9The list of English words is available from item 61 on http://www.nltk.org/nltk_data/. 
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Figure 4: News Timeline 

Note: This figure describes the news timeline and our trading activities. We exclude news from 9:00 am to 9:30 am EST 
from trading (our testing exercise), although these news are still used for training and validation purposes. For news 
that occur on day 0, we build positions at the market opening on day 1, and rebalance at the next market opening, 
holding the positions of the portfolio within the day. We call this portfolio day+1 portfolio. Similarly, we can define 
day 0 and day−1, day±2, . . . , day±10 portfolios. 

lemmatizing, which group together the different forms of a word to analyze them as a single root 

word, e.g., “disappointment” to “disappoint,” “likes” to “like,” and so forth.10 The third step is 

tokenization, which splits each article into a list of words. The fourth step removes common stop 

words such as “and”, “the”, “is”, and “are.”11 Finally, we translate each article into a vector of word 

counts, which constitute its so-called “bag of words” representation. 

We also obtain a list of 2,337 negative words (Fin-Neg) and 353 positive words (Fin-Pos) from 

the Loughran-McDonald (LM) Sentiment Word Lists for comparison purposes.12 LM show that the 

Harvard-IV misclassifies words when gauging tone in financial applications, and propose their own 

dictionary for use in business and financial contexts. 

3.2 Return Predictions 

We train the model using rolling window estimation. The rolling estimation window consists of a 

15 year interval, the first 10 years of which are used for training with the last five years used for 

validation/tuning. We then use the subsequent one-year window for out-of-sample testing. At the 

end of the testing year, we roll the entire analysis forward by a year and re-train. We iterate this 

procedure until we exhaust the full sample, which amounts to estimating and validating the model 

14 times. 

In each training sample, we estimate a collection of SSESTM models corresponding to a grid 

10The lemmatization procedure uses the WordNet as a reference database: https://wordnet.princeton.edu/. 
The stemming procedure uses the package “porter2stemmer” on https://pypi.org/project/porter2stemmer/. Fre-
quently, the stem of an English word is not itself an English word; for example, the stem of “accretive” and “accretion” is 
“accret.” In such cases, we replace the root with the most frequent variant of that stem in our sample (e.g., “accretion”) 
among all words sharing the same stem, which aids interpretability of estimation output. 

11We use the list of stopwords available from item 70 on http://www.nltk.org/nltk_data/. 
12The Loughran-McDonald word lists also include 285 words in Fin-Unc, 731 words in Fin-Lit, 19 strong modal 

words and 27 weak words. We only present results based on Fin-Neg and Fin-Pos. Other dictionaries are less relevant 
to sentiment. 
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Figure 5: One-day-ahead Performance Comparison of SSESTM 
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Note: This figure compares the cumulative log returns of portfolios sorted on out-of-sample sentiment scores. The 
black, blue, and red colors represent the long-short (L-S), long (L), and short (S) portfolios, respectively. The solid 
and dashed lines represent equal-weighted (EW) and value-weighted (VW) portfolios, respectively. The yellow solid 
line is the S&P 500 return (SPY). The legend provides a table of annual Sharpe ratios (SR) and average daily returns 
(AvgRet) in basis points. 

of tuning parameters.13 We use all estimated models to score each news article in the validation 

sample, and select the constellation of tuning parameter values that minimizes a loss function in 

the validation sample. Our loss function is the `1-norm of the differences between estimated article 

sentiment scores and the corresponding standardized return ranks for all events in the validation 

sample. 

3.3 Daily Predictions 

Figure 5 reports the cumulative one-day trading strategy returns (calculated from open-to-open) 

based on out-of-sample SSESTM sentiment forecasts. We report the long (L) and short (S) sides 

separately, as well as the overall long-short (L-S) strategy performance. We also contrast performance 

of equal-weighted (EW) and value-weighted (VW) versions of the strategy. Table 2 reports the 

corresponding summary statistics of these portfolios in detail. 

In the out-of-sample test period, we estimate the sentiment scores of articles using the optimally 

tuned model determined from the validation sample. In the case a stock is mentioned in multiple 

news articles on the same day, we forecast the next-day return using the average sentiment score 

over the coincident articles. For firms that have no news, we assign a neutral score (0.5). 

13There are four tuning parameters in our model, including (α+, α−, κ, λ). We consider three choices for α+ and 
α−, which are always set such that the number of words in each group (positive and negative) is either 25, 50, or 100. 
We consider five choices of κ (86%, 88%, 90%, 92%, and 94% quantiles of the count distribution each year), and three 
choices of λ (1, 5, and 10). 
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Table 2: Performance of Daily News Sentiment Portfolios 

Formation 

Sharpe 

Ratio Turnover 

Average 

Return α 

FF3 

R2 α 

FF5 

R2 

FF5+MOM 

α R2 

EW L-S 4.29 94.6% 33 33 1.8% 32 3.0% 32 4.3% 

EW L 2.12 95.8% 19 16 40.0% 16 40.3% 17 41.1% 

EW S 1.21 93.4% 14 17 33.2% 16 34.2% 16 36.3% 

VW L-S 1.33 91.4% 10 10 7.9% 10 9.3% 10 10.0% 

VW L 1.06 93.2% 9 7 30.7% 7 30.8% 7 30.8% 

VW S 0.04 89.7% 1 4 31.8% 3 32.4% 3 32.9% 

Note: The table report the performance of equal-weighted (EW) and value-weighted (VW) long-short (L-S) portfolios 
and their long (L) and short (S) legs. The performance measures include (annualized) annual Sharpe ratio, annualized 
expected returns, risk-adjusted alphas, and R2 s with respect the Fama-French three-factor model (“FF3”), the Fama-
French five-factor model (“FF5’), and the Fama-French five-factor model augmented to include the momentum factor�P � 

1 PT(“FF5+MOM”). We also report the strategy’s daily turnover, defined as |wi,t+1 − wi,t(1 + ri,t+1)| , where2T t=1 i 
wi,t is the weight of stock i in the portfolio at time t. 

To evaluate out-of-sample predictive performance in economic terms, we design a trading strategy 

that leverages sentiment estimates for prediction. Our trading strategy is very simple. It is a zero-

net-investment portfolio that each day buys the 50 stocks with the most positive sentiment scores 

and shorts the 50 stocks with the most negative sentiment scores.14 

We consider both equal-weighted and value-weighted schemes when forming the long and short 

sides of the strategy. Equal weighting is a simple and robust means of assessing predictive power of 

sentiment throughout the firm size spectrum, and is anecdotally closer to the way that hedge funds 

use news text for portfolio construction. Value weighting heavily overweights large stocks, which 

may be justifiable for economic reasons (assigning more weight to more productive firms) and for 

practical trade implementation reasons (such as limiting transaction costs). 

We form portfolios every day, and hold them for anywhere from a few hours up to ten days. We 

are careful to form portfolios only at the market open each day for two reasons. First, overnight 

news can be challenging to act on prior to the morning open as this is the earliest time most traders 

can access the market. Second, with the exception of funds that specialize in high-frequency trading, 

funds are unlikely to change their positions continuously in response to intraday news because of 

their investment styles and investment process constraints. Finally, following a similar choice of 

Tetlock et al. (2008), we exclude articles published between 9:00am and 9:30am EST. By imposing 

that trade occurs at the market open and with at least a half-hour delay, we hope to better match 

realistic considerations like allowing funds time to calculate their positions in response to news and 

allowing them to trade when liquidity tends to be highest. Figure 4 summarizes the news and trading 

timing of our approach. 

Three basic facts emerge from the one-day forecast evaluation. First, equal-weighted portfo-

lios substantially outperform their value-weighted counterparts. The long-short strategy with equal 

weights earns an annualized Sharpe ratio of 4.29, versus 1.33 in the value-weighted case. This in-

14On a few days there are fewer than 50 firms with non-neutral scores, in which case we trade fewer than 100 stocks 
but otherwise maintain the zero-cost nature of the portfolio. 

17 

 Electronic copy available at: https://ssrn.com/abstract=3388293 



dicates that news article sentiment is a stronger predictor of future returns to small stocks, all else 

equal. There are a number of potential economic explanations for this fact. It may arise, for example, 

due to i) the fact that small stocks receive less investor attention and thus respond slower to news, 

ii) that the underlying fundamentals of small stocks are more uncertain and opaque and thus require 

more effort to process news into actionable price assessments, or iii) that small stocks are less liquid 

and thereby require a longer time for trading to occur to incorporate information into prices. 

Second, the long side of the trade outperforms the short side, with a Sharpe ratio 2.12 versus 1.21 

(in the equal-weighted case). This fact is in part due to the fact that the long side naturally earns 

the market equity risk premium while the short side pays it. A further potential explanation is that 

investors face short sales constraints. Our findings are consistent with Santosh (2016), who shows 

less reaction to negative earnings announcements, and Reed (2007), who finds slower price reaction 

among firms with bad earnings news particularly for those stocks that are more difficult to short. 

Third, the SSESTM sentiment trading strategies have little exposure to standard aggregate risk 

factors. The individual long and short legs of the trade have at most a 41% daily R2 when regressed 

on Fama-French factors, while the long-short spread portfolio R2 is at most 10%. In all cases, the 

average return of the strategy is almost entirely alpha. Note that, by construction, the daily turnover 

of the portfolio is large. If we completely liquidated the portfolio at the end of each day, we would 

have a turnover of 100% per day. Actual turnover is slightly lower, on the order of 94% for equal-

weighted implementation and 90% for value-weighted, indicating a small amount of persistence in 

positions. In the value-weighted case, for example, roughly one in ten stock trades is kept on for 

two days—these are instances in which news of the same sentiment for the same firm arrives in 

successive days. Finally, Figure 5 shows that the long-short strategy avoids major drawdowns, and 

indeed appreciates during the financial crisis while SPY sells off. 

3.4 Most Impactful Words 

Figure 6 reports the list of sentiment-charged words estimated from our model. These are the words 

that most strongly correlate with realized price fluctuations and thus surpass the correlation screening 

threshold. Because we re-estimate the model in each of our 14 training samples, the sentiment word 

lists can change throughout our analysis. To illustrate the most impactful sentiment words in our 

analysis, the word cloud font is drawn proportional to the number of training samples (out of 14) that 

the word appears in the corresponding sentiment list. Table A.2 in Appendix F provides additional 

detail on selected words, reporting the top 50 positive and negative sentiment words over all training 

samples. It reports the number of training samples each word is selected and its average sentiment 

score in the selected samples. 

The estimated wordlists are remarkably stable over time. Of the top 50 positive sentiment words 

over all periods, 25 are selected into the positively charged set in at least 9 of the 14 training 

samples. For the 50 most negative sentiment words, 25 are selected in at least 7 out of 14 samples. 

The following nine negative words are selected in every training sample: 

shortfall, downgrade, disappointing, tumble, blame, hurt, auditor, plunge, slowdown, 
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Figure 6: Sentiment-charged Words 

Negative Words Positive Words 

Note: This figure reports the list of words in the sentiment-charged set S. Font size of a word is proportional to the 
number of training samples (out of 14) that the word appears in the corresponding sentiment list. 

and the following words are selected into the positive word ten or more training samples: 

repurchase, surpass, upgrade, undervalue, surge, customary, jump, declare, rally, discretion, beat. 

There are interesting distinctions vis-a-vis extant sentiment dictionaries. For example, in comparison 

to our estimated list of the eleven most impactful positive words listed above, only one (surpass) 

appears in the LM positive dictionary, and only four (surpass, upgrade, surge, discretion) appear in 

Harvard-IV. Likewise, four of our most impactful negative terms (tumble, blame, auditor, plunge) do 

not appear in the LM negative dictionary and six are absent from Harvard-IV. Thus, in addition to 

the fact that our word lists are accompanied by term specific sentiment weights (contrasting with 

the implicit equal weights in extant dictionaries), many of the words that we estimate to be most 

important for understanding realized returns are entirely omitted from pre-existing dictionaries. 

3.5 Fresh News and Stale News 

The analysis in Figure 5 and Table 2 focuses on relating news sentiment on day t to returns on day 

t + 1. In this section, we investigate the timing of price responses to news sentiment more precisely. 

Recall that in our training sample, we estimate SSESTM from the three-day return beginning the 

day before an article is published and ending the day after. In Figure 7, we separately investigate 

the association between news sentiment on day t and returns on day t − 1 (from open t − 1 to 

open t), day t, and day t + 1. We report this association in the economic terms of trading strategy 
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Figure 7: Price Response On Days −1, 0, and 1 
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Note: This figure compares the cumulative log returns of long-short portfolios sorted on out-of-sample sentiment scores. 
The Day −1 strategy (dashed black line) shows the association between news and returns one day prior to the news; 
the Day 0 strategy (dashed red line) shows the association between news and returns on the same day; and the Day 
+1 strategy (solid black line) shows the association between news and returns one day later. The Day −1 and Day 
0 strategy performance is out-of-sample in that the model is trained on a sample that entirely precedes portfolio 
formation, but these are not implementable strategies because the timing of the news article would not necessarily 
allow a trader to take such positions in real time. They are instead interpreted as out-of-sample correlations between 
article sentiment and realized returns in economic return units. The Day +1 strategy corresponds to the implementable 
trading strategy shown in Figure 5. All strategies are equal-weighted. The legend reports annualized Sharpe ratios 
(SR) and average daily returns (AvgRet) in basis points. 

performance. The association between sentiment and the t + 1 return is identical to that in Figure 

5, and is rightly interpreted as performance of an implementable (out-of-sample) trading strategy. 

For the association with returns on days t − 1 and t, the interpretation is different. These are not 

implementable strategies because the timing of the news article would not necessarily allow a trader 

to take a position and exploit the return at time t (and certainly not at t − 1). They are instead 

interpreted as out-of-sample correlations between article sentiment and realized returns, converted 

into economic return units. They are out-of-sample because the fitted article sentiment score, p̂i, is 

based on a model estimated from an entirely different data set (that distinctly pre-dates the arrival 

of article i and returns ri,t−1, ri,t, and ri,t+1). Table 3 reports summary statistics for these portfolios, 

including their annualized Sharpe ratios, average returns, alphas, and turnover. For this analysis, 

we specialize to equal-weighted value-weighted portfolios. 

The Day −1 strategy (dashed black line) shows the association between news article sentiment, 

and the stock return one day prior to the news. This strategy thus quantifies the extent to which 

our sentiment score picks up on stale news. On average, prices respond strongly ahead of news in 

our sample, as indicated by the infeasible annualized Sharpe ratio of 5.88. Thus we see that much of 

the daily news flow echoes previously reported news or is a new report of information already known 

to market participants. 
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Table 3: Price Response On Days −1, 0, and +1 

Formation 

Sharpe 

Ratio Turnover 

Average 

Return α 

FF3 

R2 α 

FF5 

R2 

FF5+MOM 

α R2 

L-S 

L 

S 

5.88 

2.30 

2.08 

94.5% 

95.9% 

93.2% 

45 

20 

25 

Day −1 

45 0.1% 

20 0.8% 

24 0.5% 

44 

21 

24 

0.5% 

1.1% 

1.2% 

44 

21 

24 

0.6% 

1.1% 

1.2% 

L-S 

L 

S 

10.78 

5.34 

3.56 

94.6% 

96.0% 

93.3% 

93 

50 

43 

Day 0 

93 0.4% 

48 7.0% 

45 6.0% 

93 

49 

44 

0.5% 

7.8% 

7.0% 

92 

49 

43 

0.8% 

8.1% 

7.5% 

L-S 

L 

S 

4.29 

2.12 

1.21 

94.6% 

95.8% 

93.4% 

33 

19 

14 

Day +1 

33 1.8% 

16 40.0% 

17 33.2% 

32 

16 

16 

3.0% 

40.3% 

34.2% 

32 

17 

16 

4.3% 

41.1% 

36.3% 

L-S 

L 

S 

12.38 

5.67 

3.83 

94.6% 

95.9% 

93.3% 

170 

89 

81 

Day −1 to +1 

170 1.0% 

86 22.3% 

85 16.7% 

169 

86 

82 

2.3% 

23.2% 

18.7% 

169 

87 

82 

2.8% 

24.1% 

20.1% 

Note: The table repeats the analysis of Table 2 for the equal-weighted long-short (L-S) portfolios plotted in Figure 7, 
as well as their long (L) and short (S) legs. Sharpe ratios are annualized, while returns and alphas are in basis points 
per day. 

The Day 0 strategy (dashed red line) shows the association between news and returns on the 

same day. This strategy assesses the extent to which our sentiment score captures fresh news that has 

not previously been incorporated into prices. The Day 0 strategy provides the clearest out-of-sample 

validation that our sentiment score accurately summarizes fresh, value-relevant information content 

of news text. Indeed, we see that the strongest price responses occur on the same day that the news 

arrives, reflected in the infeasible annualized Sharpe ratio of 10.78. 

The Day +1 strategy (solid black line) shows the association between news and returns one day 

later, and thus quantifies the extent to which information in our sentiment score is impounded into 

prices with a delay. This corresponds exactly to the implementable trading strategy shown in Figure 

5. The excess performance of this strategy, summarized in terms of an annualized Sharpe ratio of 

4.29 (and shown to be all alpha in Table 2), supports the maintained hypothesis. 

3.6 Speed of Information Assimilation 

We refine our analysis of the maintained hypothesis with a more granular investigation of the timing 

of price responses to news sentiment. In particular, we analyze trading strategies that trade in 

response to news sentiment with various time delays. We consider very rapid price responses via 

intra-day high frequency trading that takes a position either 15 or 30 minutes after the article’s time 

stamp, and holds positions until the next day’s open. We also consider daily frequencies by studying 

performance of daily open-to-open returns initiated from one to 10 days following the announcement, 
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Figure 8: Speed of News Assimilation 

Note: This figure compares average one-day holding period returns to the news sentiment trading strategy as a function 
of when the trade is initiated. We consider intra-day high frequency trading that takes place either 15 or 30 minutes 
after the article’s time stamp and is held for one day (denoted +15min and +30min, respectively), and daily open-to-
open returns initiated from one to 10 days following the announcement. We report equal-weighted portfolio average 
returns (in basis points per day) in excess of an equal-weighted version of the S&P 500 index, with 95% confidence 
intervals given by the shaded regions. We consider the long-short (L-S) portfolio as well as the long (L) and short (S) 
legs separately. 

in each case holding the position for one day. 

Figure 8 reports average returns in basis points per day with 95% confidence intervals given by 

the shaded regions. It shows the long-short portfolio as well as the long and short legs separately. The 

results show that, for the long-short strategy, sentiment information is essentially fully incorporated 

into prices by the start of Day +3. For the individual sides of the trade, the long leg appears to 

achieve full price incorporation within two days, while the short leg takes one extra day. 

The evidence in Section 3.5 indicates that a substantial fraction news is “old news” and already 

impounded in prices by the time an article is published, and the assimilation analysis of Figure 8 

does not distinguish between fresh versus stale news. In order to investigate the difference in price 

response to fresh versus stale news, we construct a measure of article novelty as follows. 

For each article for firm i on day t, we calculate its cosine similarity with all articles about firm 

i on the five trading days prior to t (denoted by the set χi,t). Novelty of recent news is judged based 

on its most similar preceding article, thus we define article novelty as � � 
di,t · dj

Noveltyi,t = 1 − max . 
j∈χi,t kdi,tk kdj k 
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Figure 9: Speed of News Assimilation (Fresh Versus Stale News) 

Note: See Figure 8. This figure divides stock-level news events based on maximum cosine similarity with the stock’s 
prior news. 

Figure 9 separates price assimilation of news based on article novelty. We partition news into 

two groups. “Fresh” news has a maximum cosine similarity of 0.25 with previous articles, while 

“stale” news has a maximum cosine similarity greater than 0.25.15 It shows that the one-day price 

response (from fifteen minutes after news arrival to the open the following day) of the long-short 

portfolio formed on fresh news (solid blue line) is 39 basis points, nearly doubling the response of 23 

basis points to stale news (solid red line). Furthermore, it takes four days for fresh news to be fully 

incorporated in prices (i.e., at day five average return is statistically indistinguishable from zero), or 

twice as long as the two days it takes for prices to complete their response to stale news. 

3.7 Stock Heterogeneity Analysis: Stock Size and Volatility 

Figure 9 investigates differential price responses to different types of news. In this section, we 

investigate differences in price assimilation with respect to heterogeneity among stocks. 

The first dimension of stock heterogeneity that we analyze is market capitalization. Larger 

stocks represent a larger share of the representative investor’s wealth and command larger fraction 

of investors’ attention or information acquisition effort (e.g., Wilson, 1975; Veldkamp, 2006). In 

Figure 10, we analyze the differences in price adjustment based on firm size by sorting stocks into 

big and small groups (based on NYSE median market capitalization each period). Prices of large 

15The average similarity measure in our sample is approximately 0.25. The conclusions from Figure 9 are generally 
insensitive the choice of cutoff. 
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Figure 10: Speed of News Assimilation (Big Versus Small Stocks) 

Note: See Figure 8. This figure divides stock-level news events based on stocks’ market capitalization. The big/small 
breakpoint is defined as the NYSE median market capitalization each period. 

stocks respond by 11 basis points in the first day after news arrival, and their price response is 

complete after one day (the day two effect is insignificantly different from zero). The price response 

of small stocks is 52 basis points in the first fifteen minutes, nearly five times larger, and it take three 

days for their news to be fully incorporated into prices. 

The second dimension of heterogeneity that we investigate is stock volatility. On one hand, it 

is a limit to arbitrage, as higher volatility dissuades traders from taking a position based on their 

information, all else equal. At the same time, higher stock volatility represents more uncertainty 

about asset outcomes. With more uncertainty, there are potentially larger profits to be earned by 

investors with superior information, which incentivizes informed investors to allocate more attention 

to volatile stocks all else equal. But higher uncertainty may also reflect that news about the stock 

is more difficult to interpret, manifesting in slower incorporation into prices. The direction of this 

effect on price assimilation is ambiguous. 

Figure 11 shows the comparative price response of high versus low volatility firms.16 The price 

response to SSESTM sentiment in the first 15 minutes following news arrival is 11 basis points for 

low volatility firms, but 52 basis points for high volatility firms. And while news about low volatility 

firms is fully impounded in prices after one day of trading, it takes three days for news to be fully 

16Specifically, we calculate idiosyncratic volatility from residuals of a market model using the preceding 250 daily 
return observations. We then estimate the conditional idiosyncratic volatility with via exponential smoothing according P∞ 2to the formula σt = i=0(1−δ)δi ut−1−i where u is the market model residual and δ is chosen so that the exponentially-
weighted moving average has a center of mass (δ/(1 − δ)) of 60 days . 
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Figure 11: Speed of News Assimilation (High Versus Low Volatility Stocks) 

Note: See Figure 8. This figure divides stock-level news events based on stocks’ idiosyncratic volatility. The high/low 
volatility breakpoint is defined as the cross-sectional median volatility each period. 

reflected in the price of a high volatility stock. 

3.8 Comparison Versus Dictionary Methods and RavenPack 

Our last set of analyses compare SSESTM to alternative sentiment scoring methods in terms of 

return prediction accuracy. 

The first alternative for comparison is dictionary-based sentiment scores. We construct LM 

sentiment scores of a document following by aggregating counts of words listed in their positive 

sentiment dictionary (weighted by tf-idf, as recommended by Loughran and McDonald, 2011) and 

subtracting off weighted counts of words coinciding with their negative dictionary. Finally, we follow 

the same procedure in our analysis above to average scores from multiple articles for the same firm 
LMin the same day. This produces a stock-day signal, p̂i , which may be used to construct trading 

SSEST M strategies in the same manner that we use of SSESTM-based signal, p̂i , in preceding analyses. 

The second alternative for comparison are news sentiment scores from RavenPack News Analytics 

4 (RPNA4). As stated on its website,17 

RavenPack is the leading big data analytics provider for financial services. Financial professionals 

rely on RavenPack for its speed and accuracy in analyzing large amounts of unstructured content. 

The company’s products allow clients to enhance returns, reduce risk and increase efficiency 

by systematically incorporating the effects of public information in their models or workflows. 

17https://www.ravenpack.com/about/. 
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Figure 12: SSESTM Versus LM and RavenPack 
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Note: For top panel notes, see Figure 8. In addition to SSESTM, the top panel reports trading strategy performance 
for sentiment measures based on RavenPack and LM. The bottom panel compares the daily cumulative returns of 
long-short portfolios constructed from SSESTM, RavenPack, and LM sentiment scores, separated into equal-weighted 
(EW, solid lines) and value-weighted (VW, dashed lines) portfolios, respectively. The yellow solid line is the S&P 500 
return (SPY). 
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Table 4: SSESTM Versus LM and RavenPack 

EW/VW 

Sharpe 

Ratio Turnover 

Average 

Return 

FF6+SSESTM 

α t(α) R2 α 

FF6+LM 

t(α) R2 α 

FF6+RP 

t(α) R2 

EW 

VW 

4.29 

1.33 

94.7% 

91.6% 

33 

10 

SSESTM 

29 

9 

14.96 

4.92 

7.8% 

10.2% 

29 

9 

14.91 

4.85 

4.7% 

10.7% 

EW 

VW 

3.24 

1.14 

95.3% 

94.8% 

18 

8 

15 

7 

RavenPack 

10.87 3.0% 

4.22 4.3% 

16 

8 

11.73 

4.45 

3.3% 

4.1% 

EW 

VW 

1.71 

0.73 

94.5% 

93.9% 

12 

5 

5 

3 

LM 

3.43 7.7% 

2.12 2.9% 

9 

4 

5.38 

2.67 

4.9% 

3.2% 

Note: The table repeats the analysis of Table 2 for the equal-weighted long-short (L-S) portfolios plotted in Figure 7, 
as well as their long (L) and short (S) legs. Sharpe ratios are annualized, while returns and alphas are reported in basis 
points per days. 

RavenPack’s clients include the most successful hedge funds, banks, and asset managers in the 

world. 

We use data from the RPNA4 DJ Edition Equities, which constructs news sentiment scores from 

company-level news content sourced from the same Dow Jones sources that we use to build SSESTM 

(Dow Jones Newswires, Wall Street Journal, Barron’s and MarketWatch), thus the collection of news 

articles that we have access to is presumably identical to that underlying RavenPack. However, the 

observation count that we see in RavenPack is somewhat larger than the number of observations we 

can construct from the underlying Dow Jones news. We discuss this point, along with additional 
SSEST M details of the RavenPack data, in Appendix E. Following the same procedure used for p̂i and 

LM RP p̂i , we construct RavenPack daily stock-level sentiment scores (p̂i ) by averaging the all reported 

article sentiment scores pertaining to a given firm in a given day.18 

SSEST M LM RP We build trading strategies using each of the three sentiment scores, p̂ , p̂  , and p̂ .i i i 

Our portfolio formation procedure is identical to that in previous sections, buying the 50 stocks with 

the most positive sentiment each day and shorting the 50 with the most negative sentiment. We 

consider equal-weighted and value-weighted strategies. 

The top panel of Figure 4 assesses the extent and timing of prices respond to each sentiment 

measure. It reports the average daily equally weighted trading strategy return to buying stocks 

with positive news sentiment and selling those with negative news sentiment. The first and most 

important conclusion from this figure is that SSESTM is significantly more effective than alternatives 

in identifying price-relevant content of news articles. Beginning fifteen minutes of news arrival, the 

one-day long-short return based on SSESTM is on average 33 basis points, versus 18 basis points for 

RavenPack and 12 for LM. The plot also shows differences in the horizons over which prices respond 

to each measure. The RavenPack and LM signals are fully incorporated into prices within two days 

18We use RavenPack’s flagship measure, the composite sentiment score, or CSS. 
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(the effect of RavenPack is borderline insignificant at three days). The SSESTM signal, on the other 

hand, requires four days to be fully incorporated in prices. This suggests that SSESTM is able to 

identify more complex information content in news articles that investors cannot fully act on within 

the first day or two of trading. 

The bottom panel of Figure 4 focuses on the one-day trading strategy and separately analyzes 

equal and value weight strategies. It reports out-of-sample cumulative daily returns to compare 

average strategy slopes and drawdowns. This figure illustrates an interesting differentiating feature of 

SSESTM versus RavenPack. Following 2008, and especially in mid 2014, the slope of the RavenPack 

strategy noticeably flattens. While we do not have data on their subscriber base, anecdotes from the 

asset management industry suggest that subscriptions to RavenPack by financial institutions grew 

rapidly over this time period. In contrast, the slope of SSESTM is generally stable during our test 

sample. 

Another important overall conclusion from our comparative analysis is that all sentiment strate-

gies show significant positive out-of-sample performance. Table 4 reports a variety of additional 

statistics for each sentiment trading strategy including annualized Sharpe ratios of the daily strate-

gies shown in Figure 4, as well as their daily turnover. The SSESTM strategy dominates not only in 

terms of average returns, but also in terms of Sharpe ratio, and with slightly less turnover than the 

alternatives. In equal-weighted terms, SSESTM earns an annualized Sharpe ratio of 4.3, versus 3.2 

and 1.7 for RavenPack and LM, respectively. The outperformance of SSESTM is also evident when 

comparing value-weighted Sharpe ratios. In this case, SSESTM achieves a Sharpe ratio of 1.3 versus 

1.1 for RavenPack and 0.7 for LM. 

The gain in performance of SSESTM versus LM derives from their differences in scoring strategies. 

Our assessment of sentiment-charged words and the corresponding sentiment weights are entirely 

data-driven, whereas the LM dictionary is subjective and their choices of words and sentiment scores 

is ad hoc. SSESTM’s outperformance versus RavenPack is further bolstered by the advantage that 

SSESTM is an interpretable white-box with theoretical guarantees, while RavenPack scores are 

entirely black-box. 

To more carefully assess the differences in performance across methods, Table 4 reports a series 

of portfolio spanning tests. For each sentiment-based trading strategy, we regress its returns on 

the returns of each of the competing strategies, while also controlling for daily returns to the five 

Fama-French factors plus the UMD momentum factor (denoted FF6 in the table). We evaluate both 

the R2 the regression intercept (α). If a trading strategy has a significant α after controlling for an 

alternative, it indicates that the underlying sentiment measure isolates predictive information that 

is not fully subsumed by the alternative. Likewise, the R2 measures the extent to which trading 

strategies duplicate each other. 

An interesting result of the spanning tests is the overall low correlation among strategies as well 

as with the Fama-French factors. The highest R2 we find is 10.7% for SSESTM regressed on FF6 and 

the RavenPack strategy. The SSESTM α’s are in each case almost as large as its raw return—at most 

15% of the SSESTM strategy performance is explained by the controls (i.e., an equal-weighted α of 29 

basis points versus the raw average return of 33 basis points). We also see significant positive alphas 
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Table 5: Performance of the Long-Short Portfolios Net Transaction Costs 

Gross Net 

γ Turnover Return Sharpe Ratio Return Sharpe Ratio 

0.9 92.90% 33 4.29 14 1.81 

0.8 90.60% 33 4.24 15 1.85 

0.7 88.00% 33 4.24 15 1.93 

0.6 85.30% 32 4.17 15 1.94 

0.5 82.50% 32 4.08 15 1.93 

0.4 79.50% 31 3.91 15 1.84 

0.3 76.20% 30 3.73 14 1.78 

0.2 72.30% 26 3.27 12 1.45 

0.1 67.60% 22 2.58 8 0.92 

Note: The table reports the performance of equally-weighted long-short portfolios constructed using exponen-
tially smoothed sentiment scores via SSESTM. The exponential smoothing parameter is γ. The average re-
turns and the Sharpe ratios are annualized. The portfolios’ average daily turnover is calculated as Turnover =�P � 
1 PT |wi,t+1 − wi,t(1 + ri,t+1)| . Average returns are reported in basis points per day. 
2T t=1 i 

for the alternative strategies after controlling for SSESTM, indicating not only that they achieve 

significant positive returns, but also that a component of those excess returns are uncorrelated with 

SSESTM and FF6. In short, SSESTM, RavenPack, and LM capture different varieties of information 

content in news articles, which suggests that are potential mean-variance gains from combining the 

three strategies. Indeed, and portfolio that places a one-third weight on each of the equally-weighted 

sentiment strategies earns an annualized out-of-sample Sharpe ratio of 4.9, significantly exceeding 

the 4.3 Sharpe ratio of SSESTM on its own. 

3.9 Transaction Costs 

Our trading strategy performance analysis thus far ignores transaction costs because the portfolios 

are used primarily to give economic context and a sense of economic magnitude to the strength of 

the predictive content of each sentiment measure. The profitability of the trading strategy net of 

costs is neither here nor there for assessing sentiment predictability. Furthermore, the comparative 

analysis of SSESTM, LM, and RavenPack is apples-to-apples in the sense that all three strategies 

face the same trading cost environment. 

That said, ascertaining the usefulness of news article sentiment for practical portfolio choice is 

an interesting separate question; however, this is difficult to assess from preceding tables due to the 

large turnover incurred by sentiment strategies. In this section, to better understand the relevance 

of SSESTM’s predictability gains for practical asset management, we investigate the performance of 

sentiment-based trading strategies while taking into account trading costs. 

To approximate the net performance of a strategy, we assume that each portfolio incurs a daily 

transaction cost of 2×turnover×10bps. That is, each unit of turnover incurs a total cost of 20bps, paid 

as 10bps upon entry and another 10bps upon exit of a position. The choice of 10bps approximates 

the average trading cost incurred by large asset managers, as demonstrated by Frazzini et al. (2018). 
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Our proposed adjustment is applicable to the strategies studied above, but does not recognize 

the fact that managers may take action to reduce trading costs. In order to address this, we consider 

variations of our baseline strategy that are designed to cut back portfolio turnover. To do so, we 

smooth sentiment scores by calculating moving averages of the history of scores at the stock-level. 

We opt for an exponentially-weighted moving average (EWMA) scheme, which can be represented 

with the recursive formula 

p̃i,t = γp̂i,t + (1 − γ)p̃i,t−1. 

EWMA uses moving average weights that exponentially decay with time lag, thus placing the heaviest 

emphasis on the most recent observations, but still using the entire history of data. Smoothing the 

signal in this way is beneficial for portfolio construction if the reduction in turnover (and hence 

transaction costs) more than offsets any deterioration in predictive performance of the signal.19 We 

vary the degree of smoothness from none at all (γ = 1) to very heavily smoothed (γ = 0.05). 

Table 5 reports the performance of SSESTM portfolios based on smoothed sentiment scores. 

Moving down the rows we see that more smoothing naturally translates into lower turnover. At the 

same time, the gross Sharpe ratio of the trading strategy decreases, indicating a loss in predictive 

information due to smoothing. The net Sharpe ratio, however, peaks at 1.94 when γ = 0.6. Evi-

dently, with a moderate degree of smoothing, the gain from reducing transaction costs outstrips the 

loss in predictive power. Thus, trading on news sentiment remains profitable after accounting for 

transactions costs, and some these transaction costs can be counteracted by smoothing the sentiment 

signal with EWMA. 

Conclusion 

We propose and analyze a new text-mining methodology, SSESTM, for extraction of sentiment infor-

mation from text documents through supervised learning. In contrast to common sentiment scoring 

approach in the finance literature, such as dictionary methods and commercial vendor platforms like 

RavenPack, our framework delivers customized sentiment scores for individual research applications. 

This includes isolating a list of application-specific sentiment terms, assigning sentiment weights to 

these words via topic modeling, and finally aggregating terms into document-level sentiment scores. 

Our methodology has the advantage of being entirely “white box” and thus clearly interpretable, 

and we derive theoretical guarantees on the statistical performance of SSESTM under minimal as-

sumptions. It is easy to use, requiring only basic statistical tools such as penalized regression, and 

its low computational cost makes it ideally suited for analyzing big data. 

To demonstrate the usefulness of our method, we analyze the informational content of Dow Jones 

Newswires in the practical problem of portfolio construction. In this setting, our model selects lists 

of positive and negative words that are unmistakably coherent gauges of sentiment. The resulting 

news sentiment scores are powerful predictors for price responses to new information. To quantify the 

19Note, it is not necessarily the case that smoothing p̂i,t weakens its predictive performance. If the true sentiment 
is persistent and the estimated sentiment is sufficiently noisy, then time series smoothing can potentially improve the 
predictive signal. 
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economic magnitude of their predictive content, we construct simple trading strategies that hand-

ily outperform sentiment metrics from a commercial vendor widely-used in the asset management 

industry. We also demonstrate how our approach can be used to investigate the process of price 

formation in response to news. 

While our empirical application targets information in business news articles for the purpose of 

portfolio choice, the method is entirely general. It may be adapted to any setting in which a final 

explanatory or forecasting objective supervise the extraction of conditioning information from a text 

data set. 
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Appendix 

A Algorithms 

Algorithm 1. 

S1. For each word 1 ≤ j ≤ m, let 

# articles including word j AND having sgn(y) = 1 
fj = 

# articles including word j 

S2. For a proper threshold α+ > 0, α− > 0, and κ > 0 to be determined, construct 

� � 
Sb = j : fj ≥ 1/2 + α+ ∪ j : fj ≤ 1/2 − α− ∩ {j : kj ≥ κ}, 

where kj is the total count of articles in which the jth word appears. 

Algorithm 2. 

S1. Sort the returns {yi}n in the ascending order. For each 1 ≤ i ≤ n, leti=1 

rank of yi in all returns 
pbi = . (A.1) 

n 

−1S2. For 1 ≤ i ≤ n, let sbi be the total counts of words from Sb in article i, and let dbi = sb d .i i,[Sb] 
Write Db = [db1, db2, . . . , db 

n]. Construct " # 
pb1 pb2 · · · pbn

Ob = DbWc0(WcWc0)−1 , where Wc = . (A.2)
1 − pb1 1 − pb2 · · · 1 − pbn 

Set negative entries of Ob to zero and re-normalize each column to have a unit `1-norm. We use 

the same notation Ob for the resulting matrix. 

Algorithm 3. 

S1. Let sb be the total count of words from Sb in the new article. Obtain pb by 

n bs � � o 
pb = arg max sb−1 

X 
dj log pOb 

+,j + (1 − p)Ob−,j + λ log (p(1 − p)) , (A.3) 
p∈[0,1] 

j=1 

where dj , Ob 
+,j , and Ob−,j are the jth entries of the corresponding vectors, and λ > 0 is a tuning 

parameter. 
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B Monte Carlo Simulations 

In this section, we provide Monte Carlo evidence to illustrate the finite sample performance of the 

estimators we propose in the algorithms above. 

We assume the data generating process of the positive, negative, and neutral words in each article 

follow: � � � � 
di,[S] ∼ Multinomial si, piO+ + (1 − pi)O− , di,[N ] ∼ Multinomial ni, O0 , (B.4) 

where pi ∼ Unif(0, 1), si ∼ Unif(0, 2s̄), ni ∼ Unif(0, 2n̄), and for j = 1, 2, . . . , S, � �2 � �22 j 2 2 j 2o oO+(j) = 1 − + × 1n 
|S| , O−(j) = + × 1n 

|S| ,
j< j≥|S| |S| 3|S| 2 |S| |S| 3|S| 2 

1and O0(j) ∼ m−|S| Unif(0, 2), for j = |S| + 1, . . . ,m. As a result, the first |S|/2 words are positive, 
the next |S|/2 words are negative, and the remaining ones are neutral with frequencies randomly 

drawn from a uniform distribution. 

Next, the sign of returns follows a logistic regression model: P(yi > 0) = pi, and its magnitude 

|yi| follows a Student t-distribution with the degree of freedom parameter set at 4. The standard 

deviation of the t-distribution does not affect our simulations, since only the ranks of returns matter. 

We fix the number of Monte Carlo repetitions Mc = 200 and the number of articles in the testing 

sample is 1, 000. In the benchmark case, we select |S| = 100, m = 500, n = 10, 000, s̄ = 10, and 

n̄ = 100. 

We first conduct an evaluation of the screening step. Instead of tuning those threshold parameters, 

we select a fixed amount of words, say, |S|, which achieve larger values in terms of |fj − 0.5|1{kj >κ}, 

where κ is set at the 10% quantiles of all kj s. We report in Figure A.1 the frequencies of each word 

selected in the screening step across all Monte Carlo repetitions. There is less than 0.4% probability 

of selecting any word outside the set S. Not surprisingly, the words in S that are occasionally missed 

are those with corresponding entires of T around 0. Such words are closer to those neural words in 

the set N . 

Next, Figure A.2 illustrates the accuracy of the estimation step, taking into account the potential 

errors in the screening step. The true values of T and F are shown in black. The scaling constant 

ρ ≈ 0.5 in our current setting. As shown from this plot, the estimators Fb and Tb are fairly close to 

their targets F and ρT across all words, as predicted by our theory. The largest finite sample errors 

in Fb occur to those words in F that are occasionally missed from the screening step. 

Finally, we examine the accuracy of the scoring step, with errors accumulated from the previous 

steps. Data of the testing sample are never used in the previous two steps. Table A.1 reports the 

Spearman’s rank correlation coefficients between the predicted pb and the true p for 1,000 articles in 

the testing sample in a variety of cases. We report the rank correlation because what matters is the 

rank of all articles instead of their actual scores, which are difficult to consistently estimate, because 

of the biases in the previous steps. Also, the penalization term (λ = 0.5) in our likelihood biases the 
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Figure A.1: Screening Results in Simulations 
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Note: This figure reports the frequencies of each word in the set S selected in the screening step across all Monte Carlo 
repetitions. The red bars correspond to those words with frequencies less than 100%. The red bar on the right reports 
the aggregate frequency of a selected word outside the set S. 

Figure A.2: Estimation Results in Simulations 
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b bNote: This figure compares the averages of F (blue, solid) and T (red, solid) across Monte Carlo repetitions with F 
(black, dotted), T (thin, black, dashed), and ρT (thick, black, dashed), respectively, using the benchmark parameters. 
The blue and red dotted lines plot the 2.5% and 97.5% quantiles of the Monte Carlo estimates. 
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estimated scores towards 0.5, although it has no impact on their ranks. In the benchmark setting, 

the average correlation across all Monte Carlo repetitions is 0.85 with a standard deviation 0.0014. 

If we decrease s̄ from 10 to 5, the quality of the estimates becomes worse due to less observations 

from words in S. Similarly, when decrease n to 5,000, the estimates become less accurate, since the 

sample size is smaller. If the size of the dictionary, m, or the size of the dictionary of the sentiment 

words, |S|, drop by half, the estimates improve, despite that the improvement is marginal. Overall, 

these observations match what the statistical theory predicts. 

Table A.1: Spearman’s Correlation Estimates 

benchmark s̄ ↓ n ↓ m ↓ |S| ↓ 
Avg S-Corr 0.850 0.776 0.834 0.857 0.852 
Std Dev 0.0014 0.0043 0.0024 0.0025 0.0009 

Note: In this table, we report the mean and standard deviation of Spearman’s correlation estimates across Monte Carlo 
repetitions for a variety of cases. The parameters in the benchmark case are set as: |S| = 100, m = 500, n = 10, 000, 
and s̄  = 10. In each of the remaining columns, the corresponding parameter is decreased by half, whereas the rest 
three parameters are fixed the same as the benchmark case. 

C Statistical Theory 

We quantify the statistical accuracy of our method in an asymptotic framework, where the number 

of training articles, n, and the dictionary size, m, both go to infinity. Our framework allows the 

average length of training articles to be finite or go to infinity, so the theory applies to both “short” 

and “long” articles in the training sample. Without loss of generality, we consider a slightly different 

screening procedure: � �bS = j : fj ≥ 1/2 + α+ ∪ j : fj ≤ 1/2 − α− . (C.5) 

where 
count of word j in articles with sgn(y) = +1 

fj = . 
count of word j in all articles 

It has rather similar theoretical properties as the screening procedure in Section 2, but the conditions 

and conclusions are more elegant and transparent, so we choose to present theory using this approach. 

The approach in the main text has a better empirical performance because of more tuning parameters. 

C.1 Regularity Conditions 

Let smax, smin, and s̄ be the maximum, minimum, and average of {si}ni=1, respectively. In our model, 
20for sentiment-neutral words, di,[N ] follows a multinomial distribution. Define Ωi = Edi,[N ]. For each 

j ∈ N , let Ωmin,j , Ωmax,j , and Ω̄ ·,j be the maximum, minimum, and average of {Ωi,j }ni=1, respectively. 
20If we write di,[N ] ∼ Multinomial(ni, qi), where ni is the total count of words from N in document i and qi ∈ R|+ 

N| 

is a distribution on the space of N , then Ωi = niqi. 
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We assume 

smax Ωmax,j ns̄(O+,j + O−,j ) nΩ̄ ·,j≤ C, max ≤ C, min →∞, min →∞. (C.6)¯ s̄ j∈N Ω·,j j∈S log(m) j∈N log(m) 

The last two inequalities in (C.6) require the expected count of any word in all of n training articles 

to be much larger than log(m). Since n is large in real data, this condition is mild. For a constant 

c0 ∈ (0, 1), we assume P � � n piO+,j + (1 − pi)O−,ji=1 si min P ≥ c0. (C.7)n 
j∈S i=1 si(O+,j + O−,j ) 

This condition says that the expected count of a word j ∈ S in all training articles cannot be much 

smaller than ns̄Fj , where Fj is the vector of frequency defined in (8). It is for technical convenience. 

We also assume Pn nX1 1 i=1 si E[sgn(yi)] pi = , P = 0, (C.8)n n 
i=1 

2 i=1 si 

This condition essentially requires that we have approximately equal number of articles with positive 

and negative tone. Note that we can always keep the same number of articles associated with positive 

and negative returns in the training stage, so this condition is mild. We also assume P n Ωi,j E[sgn(yi)]i=1P = 0, for all j ∈ N. (C.9)n 
i=1 Ωi,j 

This condition ensures that the count of any sentiment-neutral word has no correlation with the sign 

of the stock returns (so they are indeed “sentiment-neutral”). All equalities in (C.8)-(C.9) do not 

need to hold exactly. We impose exact equalities so that the conclusions are more elegant. 

C.2 Accuracy of the Estimators in Algorithms 1 and 2 

First, we consider the screening step. We define a quantity to capture the sensitivity of stock returns 

to article sentiment: P � �� n pi − 1 g(pi) − 1 ]i=1 si 2 2θ ≡ P , (C.10)n 
i=1 si 

1where g(·) is the monotone increasing function defined in (2). When g(1 ) = 2 , this quantity is lower P 2 
nbounded by [minx∈[0,1] g

0(x)][n 
1 
s̄  i=1 si(pi − 2

1 )2]. Roughly speaking, θ measures the steepness of g 

and the extremeness of training articles’ polarities. 

Theorem C.1. Consider the model (1)-(4), where (C.6)-(C.9) hold. As n, m →∞, with probability 

1 − o(1), ⎧ √ 
C log(m)⎪ |O+,j −O−,j |⎨≥ 2θ + √ , for j ∈ S, O+,j +O−,j n min{1, s̄(O+,j +O−,j )}√|fj − 1/2| ⎪ C log(m)⎩≤ √ , for j ∈ N. 

¯ n min{1, Ω·,j } 

The set of retrained words, Sb, is obtained by thresholding |fj −1/2| at α±. Theorem C.1 suggests 

that |fj −1/2| is large for sentiment-sensitive words and small for sentiment-neutral words, justifying 
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that the screening step is meaningful. We say that the screening step has the sure-screening property 

(Fan and Lv, 2008) if P(Sb = S) = 1 − o(1). 

Theorem C.2 (Sure Screening). Consider the model (1)-(4), where (C.6)-(C.9) hold. We assume 

(O+,j − O−,j )2 log2(m)
nθ2 min ≥ � . (C.11)¯ j∈S (O+,j + O−,j )2 min 1, s̄minj∈S (O+,j + O−,j ), minj∈N Ω·,j 

√ 
log(m) log(log(m))

In the screening step (C.5), we set α± = √ . Then, as n, m →∞,
¯ n min{1, s̄minj∈S (O+,j +O−,j ), minj∈N Ω·,j }

P(Sb = S) = 1 − o(1). 

The desired number of training articles for sure screening is determined by three factors. First, θ. 
|O+,j −O−,j |The sensitivity of stock returns to article sentiment, defined in (C.10). Second, minj∈S . ItO+,j +O−,j 

¯represents the word’s frequency-adjusted sentiment. Third, min{1, s̄minj∈S (O+,j +O−,j ), minj∈N Ω·,j }. 
Note that the last two terms in the minimum are related to the per-article count of individual words. 

For “long articles” where the per-article count of each word is bounded below by a constant, this 

factor equals 1. For “short articles”, the per-article count of a word may tend to zero, so we need to 

have more training articles. 

Next, we consider the estimation step of Algorithm 2. We quantify the estimation errors on F 

and T . The results can be directly translated to estimation errors on O+ and O−. 

Theorem C.3 (Estimation Error of Sentiment Vectors). Consider the model (1)-(4), where (C.6)-

(C.9) and (C.11) hold. As n, m →∞, with probability 1 − o(1), r r 
|S| log(m) |S| log(m)kFb − F k1 ≤ C , kTb − ρT k1 ≤ C . 

ns̄ ns̄ 

We now compare the rate with the theoretical results of topic estimation in unsupervised settings. 

It was shown in Ke and Wang (2017) that, given n articles, written on a size-|S| dictionary, with an 

average length of s̄, the minimax convergence rate of the `1-norm between true and estimated topic 

vectors is r 
|S|

, up to a logarithmic factor. 
ns̄ 

Our model imposes a 2-topic topic model on sentiment-sensitive words, so the intrinsic discionary 

size is |S|. Therefore, our method has achieved the best possible error rate of unsupervised methods. 

However, for unsupervised methods to achieve this rate, they typically require the average document 

length to be much larger than the dictionary size (Ke and Wang, 2017). Translated to our setting, 

it means the total count of sentiment-sensitive words in one article needs to be much larger than the 

number of sentiment-sensitive words. This is not satisfied in our empirical study, where the identified 

sentiment dictionary has 100 ∼ 200 words, yet their total count in one article is typically below 20. 

In this case, our supervised approach has a much smaller error rate than the unsupervised methods. 

However, the supervised approach comes with a price: Our method is estimating (F, ρT ), instead 

of (F, T ). Note that our assumption (2) ensures ρ > 0. It means, regardless of the errors of estimating 

39 

 Electronic copy available at: https://ssrn.com/abstract=3388293 



	 	

pi by pbi, our method always preserves the order of the tone of words. This property is very important, 

as it guarantees that in the scoring step we always correctly identify whether a new article has positive 

or negative sentiment, regardless of the errors in pbi. 
When pbi = pi, the factor ρ = 1. So, our method precisely estimates T . When pbi =6 pi, this factor 

is smaller than 1, so our method “discounts” the vector of tone. Once the exact distribution of yi 
given pi is specified, this factor can be computed explicitly. 

C.3 Accuracy of the Estimator in Algorithm 3 

Given a new article with sentiment p, define the rescaled sentiment as � � 
∗ 21p =

1
+ ρ−1 p − 

1 
. (C.12)

2 2 

∗ ∈ [1−ρ
−1 1+ρ−1 

It maps p ∈ [0, 1] to p , ], while preserving the order of (p − 1 ). Our scoring step gives 2 2 2 
∗ a consistent estimator of p . 

Theorem C.4 (Scoring Error on New Article). Consider the model (1)-(4), where (C.6)-(C.9) hold. 
(ρ) (ρ) (ρ)

Define O(ρ) = [O , O ], with O = F ± ρT . Suppose (C.11) is satisfied with O replaced by O(ρ).+ − ± 
1Let d ∈ Rm be the word count vector of a new article with sentiment p. For a constant c1 ∈ (0, ),+ 2 

∗ we assume that pO+,j + (1 − p)O−,j ≥ c1(O+,j + O−,j ), for all j ∈ S, and that c1 ≤ p ≤ 1 − c1, 
∗where p is the rescaled sentiment. Write � X1 

�p
|S| log(m) 1 (O+,j − O−,j )2 

errn = √ √ + √ , where Θ = . 
ρ Θ ρ ns̄Θ s O+,j + O−,j

j∈S 

We assume the length of the new article satisfies sΘ → ∞. Let pb be the estimator in (A.3) with a 

tuning parameter λ > 0. For any � > 0, with probability 1 − �, 

n o n oρ2Θ λ 1∗ −|pb− p ∗ | ≤ C min 1, errn + C min 1, |p |. 
λ ρ2Θ 2 

ρ2ΘTherefore, the optimal choice of tuning parameter is λ = errn, and the associated scoring error |p ∗− 1 |
2 

∗ − 1is |pb− p ∗| ≤ C min{errn, |p |}.2 

The choice of λ yields a bias-variance trade-off. In the error bound for |pb − p ∗|, the first term� �ρ2Θ λ ∗ − 1min 1, errn is the “variance” term, decreasing with λ; the second term min 1, |p | isλ ρ2Θ 2 

the “bias” term, increasing with λ. In reality, it is a common belief that the majority of articles have 

a neutral tone, so the bias is negligible. At the same time, text data are very noisy, so adding the 

penalty can significantly reduce the variance. Our estimator shares the same spirit as the James-Stein 

estimator (James and Stein, 1961) by shrinking the MLE of p towards 12 . Interestingly, given that 

21In this subsection, we condition on the returns {yi}ni=1 and let the probability law be with respective to only the 
randomness of word counts in training and testing articles. By (1), the probability laws with and without conditioning 
are the same. Since the randomness of ρ is from {yi}ni=1, through out this subsection, ρ is treated as non-random. 
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the true sentiment p is closer to 1 than p ∗ , the shrinkage effect here helps reduce the scaling effect 2 

in (C.12), which means in some scenarios our estimator does a better job estimating the original p. 

The error rate errn has two terms, corresponding to the noise level in the training phase and the 

scoring phase, respectively. Since n is large, the latter always dominates. To guarantee errn → 0, 

we need that the length of the new article goes to infinity asymptotically. Nonetheless, the length of 

training articles can be finite. 

Our estimator has a bias on estimating the original sentiment p. When the estimation quality in 

p̂i’s is good, ρ ≈ 1 and the bias (p ∗ − p) is small. More importantly, even with a large bias, it has no 

impact on practical usage, as the estimator preserves the relative rank of sentiments when applied 

to score multiple articles. 

Theorem C.5 (Rank Correlation with True Sentiment). Under conditions of Theorem C.4, suppose 

we are given N new articles whose sentiments p1, . . . , pN are iid sampled from a continuous distribu-
∗tion on P(c1) ≡ {p ∈ [0, 1] : pO+,j + (1 − p)O−,j ≥ c1(O+,j + O−,j ), for all j ∈ S; c1 ≤ p ≤ 1 − c1}, 

1where c1 ∈ (0, ) is a constant. We assume the length of each new article i satisfies C−1s ≤ si ≤ Cs,2p
where sΘ/ log(N) →∞. We apply the estimator (A.3) with λ = ρ2Θ·errn to score all new articles. 

Let SR(p̂, p) be the Spearman’s rank correlation between {p̂}N and {pi}N As n, m, N →∞,i=1 i=1. 

E[SR(p̂, p)] → 1. 

D Mathematical Proofs 

D.1 Proofs of Theorem C.1 and Theorem C.2 

Proof. First, we prove Theorem C.1. For each word 1 ≤ j ≤ m, let L+ 
j and L− 

j be the total counts 

of word j in articles with positive and negative returns, respectively. Write for short ti = sgn(yi) ∈P n 1±ti{±1}, for 1 ≤ i ≤ n. Then, L± = · di,j . It follows thatj i=1 2 P 
L+ − L− n1 1 j j 1 i=1 ti · di,jfj = + = + P . (D.13)n2 2 L+ + L− 2 di,jj j i=1 

Below, we study fj for j ∈ S and j ∈ N , separately. 
1 1Consider j ∈ S. As in (8), we let F = (O+ + O−) and T = (O+ − O−). We also introduce the2 2 � � 

notations ηi = 2pi −1 and ηi(g) = 2g(pi)−1. By our model, di ∼ Multinomial si, piO+ +(1−pi)O− , 
1+ηi 1−ηiwhere piO+ + (1 − pi)O− = O+ + O− = F + ηiT . It follows that2 2 � � 

di,j ∼ Binomial si, Fj + ηiTj . (D.14) 

Let {bi,j,`}si be a collection of iid Bernoulli variables with a success probability (Fj + ηiTj ). Then, `=1 
(d) P (d)sidi,j = bi,j,`, where = means two variables have the same distribution. It follows that `=1 P n P si

(d) 1 i=1 `=1 ti · bi,j,` iid
fj = + P n P si 

, where bi,j,` ∼ Bernoulli(Fj + ηiTj ). (D.15)
2 i=1 `=1 bi,j,` 
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The variables {bi,j,`} are mutually independent, with |bi,j,`| ≤ 1, Ebi,j,` = Fj + ηiTj and var(bi,j,`) ≤ 

Fj + ηiTj ≤ 2Fj . Using the Bernstein’s inequality (Shorack and Wellner, 2009), we obtain that, with 

probability 1 − O(m−2), v un si n nXX X uX tbi,j,` − si(Fj + ηiTj ) ≤ C 2siFj log(m) + log(m) 
i=1 `=1 i=1 i=1 q 

≤ C ns̄Fj log(m) + log(m) q 
≤ C ns̄Fj log(m), 

where the last inequality is due to (C.6) which says ns̄Fj � log(m). Similarly, we apply Bernstein’sP n P siinequality to study i=1 `=1 ti ·qi,j,`. By our model (1), {ti}ni=1 and {di,j }1≤i≤n,1≤j≤m are mutually 

independent. We thereby condition on {ti}n It follows that, with probability 1 − O(m−2),i=1. 

n si n qXX X 
ti · bi,j,` − ti · si(Fj + ηiTj ) ≤ C ns̄Fj log(m). 

i=1 `=1 i=1 

We plug the above inequalities into (D.15). It gives P �p � n
1 i=1 tisi(Fj + ηiTj ) + O sFj log(m)

fj = + P �p 
n¯ � n2 

i=1 si(Fj + ηiTj ) + O sFj log(m)n¯ P P �p � n n
1 Fj i=1 tiηisi + O sFj log(m)i=1 tisi + Tj n¯ 

= + P P �p � . (D.16)n n2 ηisi + O ns̄Fj log(m)Fj i=1 si + Tj i=1 P nIn the denominator, the sum of the first two terms can be rewritten as i=1 si[piO+,j +(1−pi)O−,j ]. 

It is upper bounded by 2n¯ sFj .sFj , and by (C.7), it is also lower bounded by 2c0n¯ Furthermore, since 

ns̄Fj � log(m), the last term is negligible compared to the first two terms. Hence, the denominator 

in (D.16) is between c0n¯ sFj .sFj and 4n¯ It follows that P P �p � 
n n sFj log(m)|Tj i=1 tiηisi| |Fj i=1 tisi| O n¯ 

|fj − 1/2| ≥ − + (D.17)
4nsF¯ j c0n¯ c0n¯sFj sFj 

We now deal with the randomness of {ti}n They are independent variables such that |ti| ≤ 1 andi=1.P P P P n n n n 2Eti = ηi(g). It follows that i=1 ηisiE[ti] = i=1 siηiηi(g) = 4nsθ̄ and i=1 |ηisiti|2 ≤ 4 i=1 si ≤ 
24nsmaxs̄ ≤ Cns̄ . Plugging them into the Hoeffding’s inequality (Shorack and Wellner, 2009) gives: 

with probability 1 − O(m−2), 

nX p
ηisiti − 4nsθ̄ ≤ Cs̄ n log(m). 

i=1 P P n nIn particular, we know that | i=1 ηisiti| ≥ 2nsθ̄ . Similarly, with probability 1−O(m−2), | i=1 siti−P p P n n 
i=1 siEti| ≤ Cs̄ n log(m). Note that i=1 siEti = 0, due to the second equality in (C.8). So, we 
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P p
nhave | i=1 siti| ≤ Cs̄ n log(m). We plug these results into (D.17) and find out that p �p � 

n¯|Tj |2nsθ̄ · Cs̄ n log(m) O sFj log(m)|fj − 1/2| ≥ − 
Fj 

+ 
4nsF¯ j c0n¯ c0n¯sFj sFj�q � �q �θ|Tj | log(m) log(m)≥ + O + O . (D.18)n ns̄Fj2Fj 

This gives the first claim of Theorem C.1. 

Consider j ∈ N . We model that di,[N ] follows a multinomial distribution with Edi,[N ] = Ωi. 

Equivalently, di,[N ] ∼ Multinomial(ki, qi), where ki is the count of all words from N in article i and 

qi ≡ k−1Ωi. Same as before, we view di,j as the sum of ki iid Bernoulli variables, each with a successi 

probability of qi,j . Using the Bernstein’s inequality, we can prove that, with probability 1 − O(m−2),P P pP P P n n n n n ¯| i=1 di,j − i=1 kiqi,j | ≤ C i=1 kiqi,j log(m) + log(m). Here, i=1 kiqi,j = i=1 Ωi,j = nΩ·,j , 
¯where by (C.6), nΩ·,j � log(m). Therefore, we have 

n n qX X 
¯di,j − Ωi,j ≤ C nΩ·,j log(m). 

i=1 i=1 

Similarly, conditioning on {ti}ni=1, with probability 1 − O(m−2), 

n n qX X 
¯ tidi,j − tiΩi,j ≤ C nΩ·,j log(m). 

i=1 i=1 

Plugging them into (D.13) gives �P 1 
2 ¯n 

i=1 tiΩi,j + O [nΩ·,j log(m)]P n2 Ωi,j + O [nΩ̄ ·,j log(m)] P 
i=1 � 

1 �fj = + 1 
2 �1 
2 ¯n 

i=1 tiΩi,j + O [n1 Ω·,j log(m)]� . (D.19)= + 1 
22 nΩ̄ ·,j + O [nΩ̄ ·,j log(m)] 

We then deal with the randomness of {ti}n By Hoeffding’s inequality, with probability 1−O(m−2),i=1.P n n| i=1 Ωi,j (ti −Eti)| ≤ C 
qP 

i=1 Ωi,j 
2 log(m) ≤ CΩ̄ ·,j 

p 
n log(m), where the last inequality is from the P ncondition Ωmax,j ≤ CΩ̄ ·,j . Moreover, by our condition (C.8), Ωi,j Eti = 0. The above implyi=1 

nX p 
tiΩi,j ≤ CΩ̄ ·,j n log(m). 

i=1 

¯ ¯We plug it into (D.19) and note that the denominator of (D.19) is & nΩ·,j , since nΩ·,j � log(m). It 

follows that p
C ̄Ω·,j 

� 

|fj − 1/2| ≤ 
n log(m) + O [nΩ̄ ·,j log(m)] 

1 
2 

¯ nΩ·,j 
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�q � �r � 
log(m) log(m)≤ O + O . (D.20)¯ n nΩ·,j 

This gives the second claim of Theorem C.1. 

Next, we prove Theorem C.2. By (D.18) and (D.20), with probability 1−O(m−1), simultaneously 

for all 1 ≤ j ≤ m, ⎧ ⎨ θ|Tj |≥ + O(en), j ∈ S, 2Fj|fj − 1/2| ⎩≤ O(en), j ∈ N, 

2 Ω·,j )
−1 log(m) θ|Tj |¯where e = (min{1, s̄minj∈S Fj , minj∈N . The assumption (C.11) ensures that �n n 2Fjp p 

en log(m). By setting the threshold at en log(log(m)), all words in S will retain and all words in 

N will be screened out. 

D.2 Proof of Theorem C.3 

Proof. By Theorem C.2, P(Sb = S) = 1−o(1). Hence, we assume Sb = S without loss of generality. In 

Algorithm 2, Ob is obtained by modifying and renormalizing Oe = DbWc0(WcWc0)−1 . Since EDb = OW , 

we define a counterpart of Ob by 

O ∗ = OW Wc(WcWc0)−1 . 

1 1Let F ∗ = (O∗ + O−
∗ ) and T ∗ = (O∗ − O−

∗ ). In the first part of our proof, we show that2 + 2 + 

kF ∗ − F k1 = O(n −1), kT ∗ − ρT k1 = O(n −1) (D.21) 

In the second part of our proof, we show that p
kOb± − O±

∗ k1 ≤ C |S| log(m)/(ns̄). (D.22) 

The claim follows by combining (D.21)-(D.22). 

First, we show (D.21). By definition, " # " # 
1 1 1 1 
2 2 2 2[F ∗ , T ∗ ] = O ∗ = O(WWc)(WcWc0)−1 
1 −1 1 −1 
2 2 2 2" # " # 

1 11 1
(W c WWc0)−1 2 2= [F, T ] W )(c . (D.23)

1 −11 −1 2 2| {z } 
≡M 

We now calculate the 2 × 2 matrix M . With the returns sorted in the ascending order, y(1) < y(2) < 

. . . < y(n), Algorithm 2 sets pb(i) = i/n, for 1 ≤ i ≤ n. It follows that " P 
2 P # " P P # 

n n n 2 n cW 0 i=1 pbi i=1(1 − pbi)pbi i=1 pb(i) i=1(1 − pb(i))pb(i)
W c = P P = P P . n n n n(1 − pbi)pbi (1 − pbi)2 (1 − pb(i))pb(i) (1 − pb(i))2 

i=1 i=1 i=1 i=1 
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P P n n(n+1) n n(n+1)(2n+1)It is known that i = and i2 = . We thereby calculate each entry ofi=1 i=1P P2 6 P P n 2 1 n n n 1 nWcWc0: First, i=1 pb(i) = 
n2 i=1 i

2 = 3 [1+O(n−1)]. Second, i=1(1−pb(i))pb(i) = 
n2 i=1 i(n−i) = P P P P P1 n 1 n n n 1 n 1 n−1i − 2 i2 = [1 + O(n−1)]. Third, (1 − pb(i))2 = 2 (n − i)2 = 2 i2 = n i=1 n i=1 6 i=1 n i=1 n i=0 

n [1 + O(n−1)]. Combining them gives 3 " # " # 
1 1 

−1(c 3 6 −1) W 0)−1 4 −2 
n WWc0) = + O(n =⇒ n(Wcc = + O(n −1). (D.24)

1 1 −2 46 3 

Additionally, by direct calculations, " # 
1 P 1 P 

i pipbi i pi(1 − pbi)n nn −1(WWc0) = P P . (D.25)
1 1(1 − pi)pbi (1 − pi)(1 − pbi)n i n i 

We now plug (D.24)-(D.25) into (D.23). It gives " #" #" #" #P P1 1 1 11 1 i pipbi i pi(1 − pbi) 4 −2 n n 2 2M = P P1 1 11 −1 (1 − pi)pbi (1 − pi)(1 − pbi) −2 4 −1 
n i n i 2 2" # 

6 P 
1 (pbi − 1 ) 

= P Pn i 2 .
2 12(pi − 1 ) (pi − 1 )(pbi − 1 )n i 2 n i 2 2 

The condition (C.8) yields M21 = 0. The way we construct {pbi}in 
=1 ensures M12 = O(n−1). Combined 

with the definition of ρ in (10), the above imply " # 
1 0 −1).M = + O(n (D.26)
0 ρ 

Then, (D.21) follows from plugging in (D.26) into (D.23). 

Second, we show (D.22). Let O = [O+, O−] be the matrix obtained from setting negative entries eof O to zero. Algorithm 2 outputs Ob± = (1/kO±k1)O±. It follows that, for j ∈ S, 

1 |Ob±,j − O±
∗ 
,j | ≤ |O±,j − O±

∗ 
,j | + |O±,j | · − 1 . 

kO±k1 

Since kO±∗ k1 = 1, we have |kO±k−1 − 1| = kO±k−1|kO±k1 − kO±∗ k1| ≤ kO±k−1kO± − O±
∗ k1. Hence,1 1 1 

|O±,j ||Ob±,j − O±
∗ 
,j | ≤ |O±,j − O±

∗ 
,j | + kO± − O±

∗ k1. (D.27)
kO±k1 

Summing over j on both sides gives kOb± −O±∗ k1 ≤ 2kO± −O±∗ k1. Moreover, since O±∗ are nonnegative 

vectors, truncating out negative entries in O± always makes it closer to O±
∗ . It implies kOe± −O±

∗ k1 ≤ 

kO± − O±
∗ k1. Combining the above gives 

kOb± − O±
∗ k1 ≤ 2kOe± − O±

∗ k1. (D.28) 
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Therefore, to show (D.22), it suffices to bound kOe± − O±
∗ k1. 

Let W be the matrix whose i-th column is (pi, 1−pi)
0 . Since we have assumed Sb = S, it holds that 

−1dbi = dei = s di. By model (4), sidbi ∼ Multinomial(si, piO+ + (1 − pi)O−). It leads to Edbi = (OW )i.i 

Write Z = Db − EDb . Then, Db = OW + Z and 

Oe = (OW + Z)Wc0(WcWc0)−1 = O ∗ + ZWc0(WcWc0)−1 . 

Let zi be the i-th column of Z, 1 ≤ i ≤ n. Plugging in the form of Wc, we have 
ZWc0(WcWc0)−1 

hP n P n 
i 
(WcWc0)−1 = pbizi (1 − pbi)zi .i=1 i=1 

n nwhere in the last line we have used (D.25). We now bound | 1 b The bound for | 1 

It follows that � 

kOe±,j − O± 
∗ 
,j k1 ≤ max 

nX1 
pbiZi,j

n 
, 

nX1 
(1 − pbi)Zi,j

n 

� 

n(WcWc0)−1 
1 � 

≤ C max 

i=1 
nX1 

pbiZi,j
n 

, 

i=1 
nX1 
(1 − pbi)Zi,j

n 

� 

, (D.29) 
i=1 i=1 P P 

piZi,j |. (1− n i=1 n i=1 

pbi)Zi,j | can be obtained similarly, so the proof is omitted. Since {pbi}in 
=1 are constructed from {yi}n 

i=1, 

they are independent of {Zi,j }ni=1 by our assumption (1). We thus condition on {pbi}ni=1. Let {bi,j,`}si 
`=1 

be a collection of iid Bernoulli variables with a success probability [piO+,j + (1 − pi)O−,j ]. Then, di,jP (d) P si si −1has the same distribution as It follows that Zi,j = (bi,j,` − Ebi,j,`). Hence,`=1 bi,j,`. `=1 si 

n n siX XX 
−1 pbiZi,j = pbis (bi,j,` − Ebi,j,`).i 

i=1 i=1 `=1 

−1Conditioning on {pbi}in 
=1, the variables pbis (bi,j,` −Ebi,j,`) are mutually independent, upper bounded i 

−1 −1by 2s ≤ Cs̄ , each with mean 0 and variance ≤ s̄−2(O+,j + O+,j ) = 2s̄−2Fj . By the Bernstein’smin 

inequality, with probability 1 − O(m−2), 

n q qX 
pbiZi,j ≤ C ns̄−1Fj log(m) + Cs̄−1 log(m) ≤ C ns̄−1Fj log(m), (D.30) 

i=1 P nwhere the last line is due to n¯ The bound for | pi)Zi,j | is similar. PluggingsFj / log(m) →∞. (1−bi=1 

them into (D.29) gives p
Fj log(m)kOe±,j − O±

∗ 
,j k1 ≤ C √ . (D.31) 

ns̄ 

It follows from Cauchy-Schwarz inequality that r r r�X �Xp 1 |S| log(m)log(m) 
Fj ≤ C 

log(m) 
ns̄ 

· |S| 
1 2kOe± − O±

∗ k1 ≤ C ≤ CFj2 . 
ns̄ ns̄ 

j∈S j∈S 
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This proves (D.22). The proof is now complete. 

D.3 Proof of Theorem C.4 

Proof. By Theorem C.2, P(Sb = S) = 1 − o(1). Hence, we assume Sb = S without loss of generality. 

We need some preparation. First, by our assumption, Fj +ηTj = pO+,j +(1−p)O−,j ≥ c1(O+,j + p
O−,j) = 2c1Fj . Second, by (D.31) in the proof of Theorem C.3, |Fbj − Fj | ≤ C Fj log(m)/(ns̄) and p
|Tbj − ρTj | ≤ C s). sFj � log(m), we immediately obtain |Fbj − Fj | =Fj log(m)/(n¯ Since n¯ o(Fj ). p

j log2(m)Third, the condition (C.11) guarantees nθ2 ρ
2T 2 

≥ . In other words, ρ|Tj | � Fj log(m)/(ns̄).F 2 s̄Fjj 

So, |Tbj − ρTj | � ρ|Tj |. We summarize these results as follows: for any j ∈ S, s 
|Fj + ηTj | max{|Fbj − Fj |, |Tbj − ρTj |} log(m) |Tbj − ρTj |≥ 2c1, ≤ C , = o(1). (D.32)

Fj Fj sFjn¯ ρ|Tj | 

We now proceed to the proof. Let η = 2p − 1 and ηb = 2pb− 1. Then, 

1 |pb− p ∗ | = |ηb − ρ−1η|. (D.33)
2 

It suffices to bound |ηb − ρ−1η|. We first show that the claim holds on the event |ηb − ρ−1η| ≤ c1. We 

then show that this event holds with probability 1 − o(1). 
1 1Suppose |ηb− ρ−1η| ≤ c1. Let Fb = (Ob 

+ + Ob−) and Tb = (Ob 
+ − Ob−). Since p(1 − p) = (1 − η2)/42 2 

and pOb 
+,j + (1 − p)Ob−,j = Fb + ηTbj , the penalized MLE (A.3) has an equivalent form: 

−1ηb = argmaxη∈[−1,1] ̀  λ(η), where ` λ(η) ≡ s 
X 

dj log(Fbj + ηTbj ) + λ log(1 − η) + λ log(1 + η). 
j∈S 

It follows that ` λ(ηb) ≥ ` λ(ρ−1η). Rearranging the terms gives 

X � � � �� 
(ηb − ρ−1η)Tbj � 

ηb − ρ−1η ηb − ρ−1η−1 s dj log 1 + + λ log 1 + + λ log 1 − ≥ 0. (D.34) 
Fbj + ρ−1ηTbj 1 + ρ−1η 1 − ρ−1η 

j∈S 

η−ρ−1ηNote that 1 + ρ−1η = 2p ∗ ≥ 2c1. So, on the event |ηb − ρ−1η| ≤ c1, 
b ≤ 12 . Following a similar1+ρ−1η 

ηb−ρ−1η 1argument, we have ≤ 2
1 . Note that log(1 ± x) ≤ ±x − x

2 
for x ∈ [−12 , ]. It follows that1−ρ−1η 4 2 

� � � �ηb − ρ−1η ηb − ρ−1η 
log 1 + + log 1 − 

1 + ρ−1η 1 − ρ−1η 
ηb − ρ−1η (ηb − ρ−1η)2 ηb − ρ−1η (ηb − ρ−1η)2 

≤ − − − 
1 + ρ−1η 4(1 + ρ−1η)2 1 − ρ−1η 4(1 − ρ−1η)2 

2ρ−1η 1 + ρ−2η2 

= − (ηb − ρ−1η) − (ηb − ρ−1η)2 . (D.35)
1 − ρ−2η2 2(1 − ρ−2η2)2 

(ηb−ρ−1η)Tbj ρAlso, by (D.32), Fbj +ρ−1ηTbj ∼ Fj +ηTj ≥ 2c1Fj and |Tbj | ∼ ρ|Tj |. Hence, 
Fbj +ρ−1ηTbj 

≤ |ηb−ρ−1η|· 2c1 
, 

47 

 Electronic copy available at: https://ssrn.com/abstract=3388293 



���� �������� ���� ���� ���� ���� �������� �������� ����

1which is bounded by 2
1 on the event |ηb − ρ−1η| ≤ c1. Note that log(1 + x) ≤ x − x 

4 
2 
for x ∈ [−12 , 2 ]. 

We thus have 

X � 
(ηb − ρ−1η)Tbj � 

−1 s dj log 1 + 
Fbj + ρ−1ηTbjj∈S X s−1dj Tbj X s−1dj Tb2 

η − ρ−1η)2 j≤ (ηb − ρ−1η) − (b . (D.36) 
Fbj + ρ−1ηTbj 4(Fbj + ρ−1ηTbj )2 

j∈S j∈S 

We plug (D.35)-(D.36) into (D.34). It gives 

|X1|
(ηb − ρ−1η)X1 − (ηb − ρ−1η)2X2 ≥ 0, =⇒ |ηb − ρ−1η| ≤ , (D.37)

X2 

where 

Tb2X s−1dj Tbj 2λρ−1η X s−1dj j λ(1 + ρ−2η2)
X1 = − , X2 = + . 

Fbj + ρ−1ηTbj 1 − ρ−2η2 4(Fbj + ρ−1ηTbj )2 2(1 − ρ−2η2)2 
j∈S j∈S 

Below, we give an upper bound for |X1| and a lower bound for X2. 

Consider X1. Since (F ,b Tb) are obtained from the training data, they are independent of d. We 

thus condition on (F ,b Tb). Using (D.32), we can get 

X bTjs
−1Edj 

Fbj + ρ−1ηTbjj∈S X ρTj s
−1Edj X (Tbj − ρTj)s

−1Edj X � 
1 1 

� 

≤ + + ρTj s −1Edj − 
Fj + ηTj Fbj + ρ−1ηTbj Fbj + ρ−1ηTbj Fj + ηTj

j∈S j∈S j∈S X ρTj s
−1Edj X |Tbj − ρTj |s−1Edj X |Fbj − Fj | + ρ−1η|Tbj − ρTj |≤ + + ρ|Tj |s −1Edj

Fj + ηTj 2(Fj + ηTj ) 2(Fj + ηTj )
j∈S j∈S j∈S X X X1 1 � � 

= ρ Tj + |Tbj − ρTj | + ρ|Tj | |Fbj − Fj | + ρ−1η|Tbj − ρTj |
2 2 

j∈S j∈S j∈S 

≤0 + CkFb − F k1 + CkTb − ρT k1 r 
|S| log(m)≤C , 

ns̄ P P 
where the second last line is due to j∈S O+,j = O−,j = 1 and the last line is by Theorem C.3.j∈S 

Moreover, since the covariance matrix of dj is s·diag(F +ηT )−s(F +ηT )(F +ηT )0 � s·diag(F +ηT ), 

we have �X b � X Tb2 −2Tj s
−1dj j s · s(Fj + ηTj )

Var ≤ 
Fbj + ρ−1ηTbj (Fbj + ρ−1ηTbj )2 

j∈S j∈S 
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X ρ2T 2 X
j (Tbj − ρTj )

2 

≤ Cs−1 + Cs−1 

Fj Fj
j∈S j∈S 

≤ Cs−1ρ2Θ+ Cs−1 |S| log(m) , 
ns̄ 

where we have used (D.32). Let {b`}s`=1 be iid variables, where b` ∼ Multinomial(1, F + ηT ). Then,P sd has the same distribution as b`. It follows that`=1 

sX b X X bTj s
−1dj (d) b`,j Tj

= ξ`, with ξ` ≡ . 
Fbj + ρ−1ηTbj Fbj + ρ−1ηTbjj∈S `=1 j∈S P 

Conditioning on (F ,b Tb), {ξ`}`s 
=1 are iid variables, with |ξ`| ≤ ρ(2sc1)−1 |b`,j | ≤ ρ(2sc1)−1 . Also,j∈SP P s sin the above, we have derived the bound for | Eξ`| and Var( ξ`). We apply the Bernstein’s`=1 `=1 

inequality and find out that, for any � ∈ (0, 1), with probability 1 − �, r rX Tbj s−1dj |S| log(m) Θ log(�−1) ρ log(�−1)≤ C + Cρ + 
Fbj + ρ−1ηTbj ns̄ s 2c1s 

j∈S r r 
|S| log(m) Θ log(�−1)≤ C + Cρ , (D.38) 

ns̄ s 

where the last line is because sΘ →∞. We plug (D.38) into the expression of X1. Additionally, we 
2notice that 1 − ρ−2η−2 = (1 + ρ−1η)(1 − ρ−1η) = 4p ∗(1 − p ∗) ≥ 4c1. Hence, with probability 1 − �, r r 

λ |S| log(m) Θ log(�−1)|X1| ≤ |ρ−1η| + C + Cρ . (D.39)22c ns̄ s1 

Consider X2. It is seen that, conditioning on (F ,b Tb), 
X Tb 

j 
2s−1Edj X Tb 

j 
2s−1[s(Fj + ηTj )] X ρ2T 2 

j
= ≥ C−1 ≥ C−1ρ2Θ. 

4(Fbj + ρ−1ηTbj)2 4(Fbj + ρ−1ηTbj )2 Fj
j∈S j∈S j∈S 

At the same time, 

�X � 
Tb 
j 
2s−1dj X Tb 

j 
4s−2[s(Fj + ηTj)] X ρ4Tj 

4 

Var ≤ ≤ Cs−1 ≤ Cs−1ρ4Θ. 
4(Fbj + ρ−1ηTbj )2 16(Fbj + ρ−1ηTbj )4 Fj 

3 
j∈S j∈S j∈S 

Similarly as proving (D.38), we then introduce variables {b`}s and apply the Bernstein’s inequality. `=1 

Note that the above variance is much smaller than the square of the mean, due to sΘ →∞. It follows 
that, with probability 1 − �, X Tb 

j 
2s−1dj ≥ C−1ρ2Θ. (D.40) 

4(Fbj + ρ−1ηTbj )2 
j∈S 
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We plug (D.40) into the expression of X2 and note that 1 − ρ−2η2 = 4p ∗(1 − p ∗) ≤ 1. It yields that 

X2 ≥ 
λ 
+ C−1ρ2Θ. (D.41)

2 

We now plug (D.39) and (D.41) into (D.37). It follows that q q
|S| log(m) Θ log(�−1)λ|ρ−1η| + + ρ ns̄  s|ηb − ρ−1η| ≤ C 
λ + ρ2Θ 

By separating two cases, λ ≤ ρ2Θ and λ > ρ2Θ, we immediately obtain ⎧ �√ √ �⎪ λ |S| log(m) log(�−1)⎨ |ρ−1η| + √ + √ , if λ ≤ ρ2Θ,
ρ2Θ ρ2Θ ns̄  ρ Θs|ηb − ρ−1η| ≤ C �√ √ �⎪ ρ2Θ |S| log(m) log(�−1)⎩|ρ−1η| + √ + √ , if λ > ρ2Θ.λ ρ2Θ ns̄  ρ Θs 

Combining it with (D.33) and noting that ρ−1η = 2(p ∗ − 1 ), we have the desired claim.2 

What remains is to show that the event |ηb − ρ−1η| ≤ c1 holds with probability 1 − o(1). For the 

function ` λ(·), by direct calculations, 

Tb2X djTbj 2λη X dj λ(1 + η2)
`00 

j
`0 λ(η) = − , λ(η) = − − . 

Fbj + ηTbj 1 − η2 2(Fbj + ηTbj )2 2(1 − η2)2 
j∈S j∈S 

As η → +1, `0 (η) → −∞; as η → −1, `0 (η) → +∞. Hence, the maximum is attained in the interior λ λ 
∗ `0of (−1, 1). Since the true p ∈ [c1, 1 − c1], it follows that |ρ−1η| ≤ |1 − 2c1|. We now evaluate (·)λ 

at 1 − 1.9c1. Following the same argument as proving (D.38), we can show that 

X �q � � q �ρTj (Fj + ηTj ) 2λ(1 − 1.9c1) |S| log(m) Θ log(�−1)`0 λ(1 − 2c1) = − + O + O ρ ns̄  s 
j∈S 

Fj + (1 − 1.9c1)ρTj [1 − (1 − 1.9c1)2]2 

X ρ2[(1 − 1.9c1) − ρ−1η]T 2 2λ(1 − 1.9c1) 
= − j − + o(λ + ρ2Θ) 

j∈S 
[Fj + (1 − 1.9c1)ρTj ] [1 − (1 − 1.9c1)2]2 �q2λ(1 − 1.9c1) |S| log(m) 

� 
≥ −0.1c1ρ2Θ − + O + o(λ + ρ2Θ). ns̄[1 − (1 − 1.9c1)2]2 

So, it is strictly negative. As a result, the maximum cannot be attained at [1 − 1.9c1, 1). Similarly, 

we can prove that the maximum cannot be attained at (−1, −1+1.9c1]. Now, we have restricted our 

attention to a compact interval that is bounded away from ±1 by at least 1.9c1. For any η0 in this 

interval, Fj + η0Tj ≥ cFj for a constant c > 0. This allows us to mimic the proof of (D.40)-(D.41) 

to get 

−`00 λ(η0) ≥ C−1(λ + ρ2Θ), for η0 in this compact interval. 

By Taylor expansion, there exists η0, whose value is between ρ−1η and ηb, such that 

0 = ` λ 
0 (ηb) = ` λ 

0 (ρ−1η) + `00 λ(η0)(ηb − ρ−1η). 
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If |ηb − ρ−1η| > c1, then the above implies |`0 (ρ−1η)| ≥ c1|`00(η0)| ≥ C−1(λ + ρ2Θ). On the otherλ λ 

hand, we notice that X1 = `0 (ρ−1η), where we have proved in (D.39) that |X1| = o(λ + ρ2Θ). Thisλ 

yields a contradiction. The proof is now complete. 

D.4 Proof of Theorem C.5 

Proof. Since {pi}Ni=1 are drawn from a continuous density, with probability 1, their values are distinct 

from each other. The Spearman correlation coefficient has an equivalent form: 

NX 
SR(p̂, p) = 1 − 

1 
(r̂i − ri)

2 , (D.42)
N(N2 − 1) 

i=1 

∗ ∗where ri is the rank of pi among {pi}Ni=1, which also equals to the rank of p among {p }Ni=1, and r̂ii i 

is the rank of p̂i among {p̂i}N By definition, i=1. 

N NX X 
∗ ∗ ri = sgn(pi − pj ) + N + 1, r̂i = sgn(p̂i − p̂j ) + N + 1, 

j=1 j=1 

where the sign function takes values in {0, ±1}. In the proof of Theorem C.4, letting � = N−2 , we 

get the following result: Conditioning on {pi}Ni=1, with probability 1 − N−2 , �p p � 
C |S| log(m) log(N)∗ max |p̂i − pi | ≤ δ, where δ = √ √ + √ . (D.43)

1≤i≤N sρ Θ ρ ns̄Θ 

We note that the quantity ρ on the right hand side depends on the training labels while the probability 

law is with respect to the randomness of the training and testing articles. By the assumption (1), we 

can always condition on the training labels and treat ρ as a constant. Let D be the event that (D.43) 

holds simultaneously for all 1 ≤ i ≤ N . Using the probability union bound, we have P(D) = 1−N−1 . 

For each 1 ≤ i ≤ N , define the index set 

∗ ∗ Bi(3δ) = {1 ≤ j ≤ N : j 6= i, |pj − pi | ≤ 3δ}. 

∗ ∗ ∗ ∗On the event D, for j ∈/ Bi(3δ), |p − p | > 3δ, while |p̂i − p | ≤ δ and |p̂j − p | ≤ δ; hence, (p̂i − p̂j )i j i j 
∗ ∗ must have the same sign as (p − p ). It follows thati j X � �∗ ∗ |ri − rj | ≤ |sgn(pi − pj )| + |sgn(p̂i − p̂j )| ≤ 2|Bi(3δ)|. 
j∈Bi(3δ) 

We plug it into (D.42) and note that |r̂i − ri|2 ≤ N |r̂i − ri|. It yields 

NX1 2N 
1 − SR(p̂, p) ≤ |r̂i − ri| ≤ max |Bi(3δ)|. (D.44)

N2 − 1 N2 − 1 1≤i≤N 
i=1 

∗In other words, conditioning on {p }iN 
=1, (D.44) holds with probability 1 − N−1 .i 
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i 
∗ ∗We now bound |Bi(3δ)|, taking into consideration the randomness of {p }N Each p is ai i=1. 

non-random, linear, monotonically increasing function of pi (note: ρ is treated as non-random; see 
∗explanations above). Therefore, the distribution assumption on {pi}N yields that {p }N are iidi=1 i i=1 

drawn from a continuous distribution on [c1, 1−c1]. The probability density of this distribution must 

be Lipschitz. Fix 1 ≤ i ≤ N and write X n o 
∗ ∗ |Bi(3δ)| = 1 pj ∈ [pi − 3δ, p ∗ 

i + 3δ] ∩ [c1, 1 − c1] . 
j 6=i 

∗ ∗Conditioning on pi , the other p ’s are iid drawn from a Lipschitz probability density. As a result, j 
∗ ∗each other p has a probability of O(δ) to fall within a distance of 3δ to pi , i.e., |Bi(3δ)| is the sumj 

of (N − 1) iid Bernoulli variables with a success probability of O(δ). By the Bernstein’s inequality, 

with probability 1 − N−2 , p
|Bi(3δ)| ≤ CNδ + C Nδ log(N) + C log(N). 

Combining it with the probability union bound, with probability 1−N−1 , the above inequality holds 

simultaneously for all 1 ≤ i ≤ N . We then plug it into (D.44) and get r nδ log(N) C log(N)
1 − SR(p̂, p) ≤ Cδ + C + ≤ C max δ, 

N N 

olog(N) 
. 

N 
(D.45) 

Under our assumption, the right hand side of (D.45) is o(1). The claim follows immediately. 

E RavenPack 

The data we use are composite sentiment scores from RavenPack News Analytics 4 (RPNA4) DJ 

Edition Equities. The underlying news data for this version of RavenPack should be identical to the 

collection of Dow Jones articles that we use to build SSESTM. However, the observation count that 

we see in RavenPack is somewhat larger than the number of observations we can construct from 

the underlying Dow Jones news. The discrepancy arises from the black-box transformations that 

RavenPack applies during it analytics process. Ultimately, what we observe in RavenPack is their 

collection of article-level score that is indexed by stock ticker and time, and it is not possible to 

accurately map RavenPack observations back to the original news. As a result, we cannot pin down 

the precise source of the difference in observation counts between our two data sets. The most likely 

explanation is that RavenPack uses a proprietary algorithm to assign ticker tags to articles, while 

we rely on the tags assigned directly by Dow Jones. If this expands the set of articles tagged to a 

given firmTo the extent that RavenPack adds tags, it is likely that the same article is assigned to 

multiple firms, which results in a higher RavenPack observation count. 

Figure A.3 shows the differences in observation counts in our data set (the complete set of Dow 

Jones Newswires from 1984 through mid-2017) versus RavenPack. We restrict all counts to those 

having a uniquely matched stock identifier in CRSP. We see that early in the sample the article 
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Figure A.3: Dow Jones Newswire and RavenPack Observation Counts 

count for Newswires and RavenPack are similar, but this difference grows over time. When we map 

Newswires to CRSP, we use articles’ stock identifier tags, which are provided by Dow Jones. Our 

interpretation of the figure is that, over time, RavenPack has become more active in assigning their 

own stock assignments to previously untagged articles. 

F Additional Exhibits 
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Table A.2: List of Top 50 Positive/Negative Sentiment Words 

Positive Negative 
Word Score Samples Word Score Samples 

repurchase 0.573 14 shortfall 0.323 14 
surpass 0.554 14 downgrade 0.382 14 
upgrade 0.551 14 disappointing 0.392 14 
undervalue 0.604 13 tumble 0.402 14 
surge 0.551 13 blame 0.414 14 
customary 0.549 11 hurt 0.414 14 
jump 0.548 11 auditor 0.424 14 
declare 0.545 11 plunge 0.429 14 
rally 0.568 10 slowdown 0.433 14 
discretion 0.544 10 plummet 0.418 13 
beat 0.538 10 miss 0.424 13 
treasury 0.567 9 waiver 0.418 12 
unsolicited 0.555 9 sluggish 0.428 12 
buy 0.548 9 downward 0.433 12 
climb 0.543 9 warn 0.435 12 
tender 0.541 9 halt 0.417 11 
top 0.540 9 lower 0.424 11 
imbalance 0.567 8 fall 0.431 11 
up 0.568 7 resign 0.441 11 
bullish 0.555 7 soften 0.443 11 
soar 0.548 7 slash 0.435 10 
tanker 0.546 7 lackluster 0.437 10 
deepwater 0.544 7 postpone 0.445 10 
reconnaissance 0.544 7 unfortunately 0.445 10 
fastener 0.538 7 unlawful 0.447 10 
bracket 0.538 7 covenant 0.424 9 
exceed 0.534 7 woe 0.425 9 
visible 0.557 6 delay 0.428 9 
valve 0.545 6 subpoena 0.429 9 
unanimously 0.543 6 default 0.437 9 
bidder 0.540 6 soft 0.437 9 
terrain 0.539 6 widen 0.438 9 
gratify 0.536 6 issuable 0.441 9 
armor 0.536 6 regain 0.441 9 
unregistered 0.535 6 deficit 0.442 9 
tag 0.559 5 irregularity 0.442 9 
maritime 0.542 5 bondholder 0.445 9 
reit 0.542 5 weak 0.445 9 
warfare 0.539 5 hamper 0.445 9 
propane 0.539 5 notify 0.451 9 
hydraulic 0.534 5 insufficient 0.433 8 
epidemic 0.534 5 unfavorable 0.434 8 
horizon 0.582 4 erosion 0.436 8 
clip 0.567 4 allotment 0.446 8 
potent 0.566 4 suspend 0.454 8 
fragment 0.562 4 inefficiency 0.434 7 
fossil 0.550 4 persistent 0.435 7 
reallowance 0.549 4 worse 0.439 7 
terrorism 0.544 4 setback 0.443 7 
suburban 0.539 4 parentheses 0.445 7 

Note: The table shows the list of top 50 lists words with positive and negative sentiment based on screening from the 
14 training and validation samples. These 50 words are selected by first sorting on the number of samples (out of 14) 
in which the word was selected, and then sorting on their average sentiment score. 
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